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Abstract
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on these two actions, her action is nonnegatively correlated with the payoff difference be-

tween the two actions. This simple and robust result has implications in a wide variety of

contexts, including individual choice under uncertainty, strategic form games, and incom-

plete information games. Incentive compatibility constraints have an immediate “statistical”
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Introduction

If a person takes an action, she cannot prefer to take another action instead. This fun-

damental idea is called “revealed preference” in choice theory or “incentive compatibility” in

game theory. Often a person’s payoff, and hence her chosen action, depends on probabilistic

events she cannot control, such as the weather or the actions of others. Thus her action,

and the payoff she receives, can be considered random variables. This paper shows that in-

centive compatibility implies that when a person chooses among two actions, conditional on

these two actions, her action is nonnegatively correlated with the payoff difference between

the two actions. This simple result has implications in a wide variety of contexts, includ-

ing individual choice under uncertainty, strategic form games, and incomplete information

games. This result is shown in a general context, independent of any assumption about

prior beliefs, communication and coordination devices, incomplete information, or whether

the randomness is due to exogenous events or the endogenous actions of other people or

both. This result shows how revealed preference or incentive compatibility constraints have

an immediate “statistical” interpretation.

In the context of strategic form games, this result has several implications. For example,

in a two person game in which one person’s payoffs are quadratic, one can predict the sign

of the covariance of people’s actions in any correlated equilibrium of the game. In a local

interaction game, one can predict the sign of the covariance between a person’s action and

the number of neighbors who take the same action. For 2 × 2 games, observing a signed

covariance in people’s actions is sufficient to identify pure strategy Nash equilibria of the

game. For incomplete information games, the result yields testable empirical predictions

which hold for any assumption about prior beliefs or the kind of incomplete information and

which do not require computing an equilibrium. This paper starts with definitions and the

main result, considers several examples, and concludes by discussing the merits of “statistical

game theory.”

Definitions and main result

We have a standard framework. A person chooses x from a finite set X but does not

choose y, which belongs to a finite set Y . For example, y might be determined by exogenous

randomness, the choices of other people who have their own motivations, or both. Her utility

function is given by u : X × Y → <. Let p : X × Y → < be a probability distribution over
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X × Y , in other words p(x, y) ≥ 0 for all (x, y) ∈ X × Y and
∑

(x,y)∈X×Y p(x, y) = 1. Let U

be the set of all utility functions on X×Y and let P be the set of all probability distributions

on X × Y .

Incentive compatibility is defined by the following linear inequality.∑
y∈Y

p(x, y)u(x, y) ≥
∑
y∈Y

p(x, y)u(x′, y) for all x, x′ ∈ X. (IC)

The idea here is that when the person plays x, the probability distribution over Y is given

by p(x, y), and her expected utility is
∑

y∈Y p(x, y)u(x, y). If she plays x′ instead, then

her payoffs change but the resulting probability distribution over Y does not change (since

she cannot control y), and hence she gets expected utility
∑

y∈Y p(x, y)u(x′, y). The IC

constraint says that she cannot gain by doing so. Let IC(u) be the set of probability

distributions p which satisfy IC given u, and let IC(p) be the set of utility functions u

which satisfy IC given p. It is easy to see that IC(u) and IC(p) are convex sets. It is easy

to see that ū ∈ IC(p), where ū is defined as ū(x, y) = 0 for all x, y, and hence IC(p) 6= ∅. We

know that IC(u) 6= ∅ by for example Hart and Schmeidler (1989) and Nau and McCardle

(1990). We say that u is trivial if IC(u) = P , in other words, if every probability distribution

satisfies IC.

We can think of X×Y as a probability space with probability distribution p. A random

variable is a function defined on X × Y . Given some subset Z ⊂ X × Y , we define the

“indicator function” 1Z : X × Y → < as 1Z(x, y) = 1 if (x, y) ∈ Z and 1Z(x, y) = 0

otherwise. If x ∈ X, for convenience we write 1x instead of 1{x}×Y , and similarly if y ∈ Y ,

we write 1y instead of 1X×{y}. We define x : X×Y → X as x(x, y) = x and y : X×Y → Y

as y(x, y) = y. In this paper, we use boldface to indicate random variables.

Given p and a real-valued random variable f : X × Y → <, the expectation of f is

Ep(f) =
∑

(x,y)∈X×Y p(x, y)f(x, y). Given Z ⊂ X × Y , we write p(Z) =
∑

(x,y)∈Z p(x, y).

Given Z ⊂ X × Y such that p(Z) > 0, the conditional expectation of f is Ep(f|Z) =

(
∑

(x,y)∈Z p(x, y)f(x, y))/p(Z). The covariance of two real-valued random variables f and g

is covp(f,g) = Ep(fg) − Ep(f)Ep(g), and the conditional covariance covp(f,g|Z) is defined

similarly. For convenience, if p(Z) = 0, we write covp(f,g|Z) = 0. Note that for random

variables f,g,g′ and real numbers α, α′ ∈ <, we have covp(f, αg + α′g′) = αcovp(f,g) +

α′covp(f,g
′).
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The probability distribution p can be understood in a few different ways. Since the

person controls x ∈ X but not y ∈ Y , one might instead think of the person as choosing a

conditional probability distribution r(x|y), where y has an exogenous probability distribution

q(y) over Y . We use p(x, y) because it is simpler and mathematically equivalent (although it

is not exactly equivalent, since one might say that r(x|y) should be well-defined even when

q(y) = 0). Another interpretation is that p is the result of a possibly quite complicated

messaging and information mechanism by which the person learns and updates beliefs about

y ∈ Y ; for example, the person might receive some signal which is correlated with y, she

might receive an explicit message from another person about what y is, or she might know

something about y directly. Regardless of how p occurs, if p violates IC then the person is

not maximizing her expected payoff, since it is always possible for the person, whenever he

chooses x, to choose x′ instead (see for example Myerson 1991 on the “revelation principle”).

Finally, p can be understood simply as the observed histogram of the person’s actions over

some time period. We might not know why the person’s actions along with exogenous or

endogenous randomness result in the histogram p, but we can surely say that whenever she

chose x, she could have chosen x′ instead, and thus she could not have gained by doing so.

The IC constraints can thus be understood as revealed preference inequalities.

Our main result is a signed conditional covariance. Given incentive compatibility, then

conditional on two choices x and x′, the random variable which indicates when the per-

son plays x and the random variable which is the payoff difference between x and x′ are

nonnegatively correlated.

Proposition. Say p, u satisfy IC and x, x′ ∈ X. Then

covp(1x, u(x,y)− u(x′,y)|{x, x′} × Y ) ≥ 0.

This result is obtained by manipulating two IC constraints: the constraint that when the

person chooses x, she cannot do better by playing x′, and when the person chooses x′, she

cannot do better by playing x. The proof is in the appendix. Note that the IC constraints

are linear in p while the covariance in the Proposition is quadratic in p; in other words, the

Proposition is not a linear restatement of the IC constraints.

Since the Proposition is based on only the IC constraints, it holds under very weak

conditions. Again, the IC constraints hold regardless of any assumption about how the
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person might or might not have knowledge about y. The IC constraints do not involve

any assumption about how exactly p(x, y) comes about. The IC inequalities are minimal

requirements for individual rationality: whenever the person chooses x, she could have chosen

x′ instead, and the fact that she did not means that she could not have gained by doing so.

The 2× 2 case

To illustrate the Proposition, we take the simplest nontrivial case, when X = {x, x′}
and Y = {y, y′}. Say that u : X × Y → < is given by the following table.

y y′

x 8 3

x′ 0 7

The Proposition says that if p, u satisfy IC, then the two random variables 1x and u(x,y)−
u(x′,y) are nonnegatively correlated given p. These two random variables are shown below.

y y′

x 1 1

x′ 0 0

1x

y y′

x 8 −4

x′ 8 −4

u(x,y)− u(x′,y)

For these two random variables to have nonnegative covariance, it must be that when 1x is

high, u(x,y) − u(x′,y) is high; roughly speaking, it must be that p(x, y) and p(x′, y′) are

large compared with p(x, y′) and p(x′, y).

Here are some example probability distributions.

y y′

x 0.6 0

x′ 0 0.4

p

y y′

x 0.55 0.04

x′ 0.05 0.36

p′

y y′

x 0.7 0.3

x′ 0 0

p′′

y y′

x 0.1 0.3

x′ 0.5 0.2

p′′′

The first distribution p is what results if y occurs with probability 0.6 and y′ occurs with

probability 0.4, and the person knows exactly when either y or y′ occurs, and makes his

optimal choice accordingly. The second distribution p′ is consistent with a situation in

which the person gets a noisy signal about whether y or y′ occurs; the signal is correct

often enough so that the person still chooses x if the signal indicates y and x′ if the signal

indicates y′. The third distribution p′′ is consistent with the person not knowing anything

about y or y′; since y is more likely than y′, the person is best off choosing x all the time.
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All three distributions p, p′, p′′ satisfy IC, and in all three distributions, the covariance of

1x and u(x,y) − u(x′,y) is nonnegative (positive in p and p′ and zero in p′′). In the last

distribution p′′′, the covariance of 1x and u(x,y) − u(x′,y) is negative, and it is easy to

see that IC is violated: regardless of the beliefs behind the person’s choice and what he

knows about y or y′, he violates rationality because all the times that he chooses x and gets

expected utility (0.1)8 + (0.3)3 = 1.7, he could choose x′ instead and get a higher expected

utility (0.1)0 + (0.3)7 = 2.1.

In the 2× 2 case, we have two simple facts.

Fact 1. Say X = {x, x′} and Y = {y, y′} and u is nontrivial. Then either covp(1x,1y) ≥ 0

for all p ∈ IC(u) or covp(1x,1y) ≤ 0 for all p ∈ IC(u).

In other words, as long as u is nontrivial (that is, P 6= IC(u)), then we can sign the covariance

of x and y in all incentive compatible p. Fact 1, proved in the appendix, follows immediately

from the Proposition: the Proposition signs the covariance of 1x and u(x,y)− u(x′,y), but

when Y has only two elements, u(x,y)− u(x′,y) is a linear function of 1y and hence we can

sign the covariance of 1x and 1y. Fact 2 follows immediately from Fact 1.

Fact 2. Say X = {x, x′} and Y = {y, y′} and u is nontrivial. Say p, p′ ∈ IC(u). If

covp(1x,1y) > 0, then covp′(1x,1y) ≥ 0. If covp(1x,1y) < 0, then covp′(1x,1y) ≤ 0.

In other words, say that we observe p and then try to identify incentive compatible u. Once

we have done this, it is natural to then make a prediction based on what has been learned

about u. In the 2 × 2 case, this could not be simpler. If one observes for example positive

covariance between x and y, in any utility function u consistent with this observation, in any

incentive compatible p′ of any such utility function, one must have nonnegative covariance

(assuming the utility function is not trivial). In other words, if we observe signed covariance,

we can predict that in future behavior, the covariance cannot have the opposite sign. We can

make this prediction without knowing or assuming anything else about the utility function

(other than that it is nontrivial).
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Quadratic payoffs

Say X ⊂ < and Y ⊂ <m; in other words, x ∈ X is a real number and y = (y1, . . . , ym) ∈
Y is a vector of real numbers. When the utility function u is quadratic in x and yi (actually,

when it satisfies a somewhat weaker condition), we can sign the weighted sum of covariances

between x and the various yi. The proof of Fact 3 is in the appendix.

Fact 3. Say that X ⊂ <, Y ⊂ <m and u satisfies the condition that u(x, y) − u(x′, y) =

v(x, x′)
∑m

j=1 cjyj + w(x, x′), where cj ∈ < and v(x, x′) > 0 when x > x′. Say p, u satisfy

IC. Then
∑m

j=1 cj covp(x,yj) ≥ 0.

For example, say that X, Y ⊂ < and u is quadratic: u(x, y) = kxyxy + kxxx
2 + kyyy

2 +

kxx + kyy + k0, where kxy, kxx, kyy, kx, ky, k0 ∈ <; we can think of kxy as the “interaction

term.” It is easy to see that this utility function satisfies the condition in Fact 3: set

c1 = kxy, v(x, x′) = x − x′ and w(x, x′) = kxx(x2 − (x′)2) + kx(x − x′). Fact 3 says that

kxy covp(x,y) ≥ 0. Thus we have three conclusions. First, if kxy 6= 0, we can predict the sign

of the covariance of x and y. Second, if we observe a positive covariance, we can conclude

that kxy ≥ 0. Third, say that we observe a signed covariance. We can predict that in any

utility function consistent with this observation, in any behavior consistent with any such

utility function, the covariance must have the same sign. We make this prediction knowing

nothing else about the utility function, other than assuming it is quadratic and kxy 6= 0.

It is easy to explain how the proof works. The Proposition signs the covariance between

1x and the utility difference u(x,y)−u(x′,y) conditional on {x, x′}×Y . When the condition

in Fact 3 is satisfied, the utility difference u(x,y)− u(x′,y) is a weighted sum of the various

yj , and thus we can sign the weighted sum of covariances between 1x and the various

yj conditional on {x, x′} × Y . It is not hard to show (Lemma 3 in the appendix) that

the unconditional covariance covp(x,yj) can be obtained by summing up the conditional

covariances covp(x,yj |{x, x′} × Y ) over x, x′ ∈ X. Hence we can sign the weighted sum of

unconditional covariances.

For an example which is not quadratic, say u(x, y1, y2) = 5x1/2y1 − 3x1/2y2 + 4y1y2 +

6(y1 − y2)
2 − 7x3/2. By Fact 3, we have 5covp(x,y1)− 3covp(x,y2) ≥ 0.
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Odds ratios

We can also think in terms of “odds ratios.” Note that the person does not control y

and hence cannot determine the absolute levels of p(x, y) and p(x′, y), for example. However,

the person is in control of x, and can determine the odds ratio p(x, y)/p(x′, y). One might

think that if p, u satisfy IC, then the ratio p(x, y)/p(x′, y) should be higher when the payoff

difference u(x, y)− u(x′, y) is higher. This is not true: the ratio does not always increase in

the payoff difference. However, we can make a weaker statement: Fact 4 says that the odds

ratio cannot always decrease in the payoff difference.

Fact 4. Say that p, u satisfy IC and x, x′ ∈ X. Say that u(x, y)− u(x′, y) is not constant in

y and that p(x′, y) > 0 for y ∈ Y . The following statement is not true:

u(x, y)− u(x′, y) > u(x, y′)− u(x′, y′) ⇔ p(x, y)/p(x′, y) < p(x, y′)/p(x′, y′).

The proof is in the appendix, but it is easy to explain how it works. By the Proposition,

we know that the person’s action and his payoff difference are nonnegatively correlated. If x

is always played less often relative to x′ when the payoff difference is higher, then we would

have a negative correlation.

Say X,Y ⊂ <. If u(x, y)− u(x′, y) strictly increases in y for all x > x′, then u is called

strictly supermodular. If p(x, y)/p(x′, y) strictly increases in y for all x > x′, then p is called

strictly totally positive of order 2 (Karlin and Rinott 1980a; Milgrom and Weber 1982 use

the term “affiliated”). If p(x, y)/p(x′, y) strictly decreases in y for all x > x′, then p is

called strictly reverse rule of order 2 (Karlin and Rinott 1980b). From Fact 4, if payoffs u

are strictly supermodular, then p is not necessarily strictly totally positive of order 2, but

cannot be strictly reverse rule of order 2. Similarly, if p is strictly totally positive of order 2,

then u need not be strictly supermodular, but −u cannot be strictly supermodular.

Choice under uncertainty

To illustrate our results in the context of choice under uncertainty, consider a simple

example of a paparazzo and a celebrity. The paparazzo is a photographer who wants to

get as close as possible to the celebrity, whose location changes each day. Let x ∈ X be

the photographer’s location and y ∈ Y be the celebrity’s location, where X, Y ⊂ <. An

appropriate utility function for the paparazzo is u(x, y) = −(x− y)2.
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If the paparazzo always knows the celebrity’s location y, he chooses x = y, which maxi-

mizes u(x, y). But the celebrity might wear disguises, the paparazzo might try to cultivate

informants, the celebrity might try to create false rumors, and so forth, in a rather compli-

cated process. The standard way to predict which location the paparazzo chooses on a given

day, however, is quite straightforward: we simply specify the paparazzo’s prior belief over

Y of the celebrity’s location on that day, and then we find the x ∈ X which maximizes the

paparazzo’s expected payoff given this belief.

This paper’s approach does not require specifying any beliefs. We write u(x, y) = −x2 +

2xy − y2. Since the coefficient on the xy term is 2, by Fact 3 we have 2covp(x,y) ≥ 0

and hence covp(x,y) ≥ 0. In other words, we predict that the paparazzo’s location and

the celebrity’s location are nonnegatively correlated. If the paparazzo always knows the

celebrity’s exact location, then x = y and their locations are perfectly positively correlated.

If the paparazzo never knows anything about the celebrity’s location and thus always goes

to the middle of town, their locations have zero correlation. What cannot happen is for the

paparazzo’s location and the celebrity’s location to be negatively correlated. This prediction

holds for any prior belief, for any specification of how the paparazzo gains information or

disinformation, and for any probability distribution of the celebrity’s actual location. This

prediction holds regardless of the definition of X ⊂ < and Y ⊂ <, for example whether

the elements of X and Y are bunched together or evenly spread out. This prediction holds

regardless of whether the celebrity consciously chooses his location or whether his location

is determined exogenously by his shooting schedule. This prediction holds regardless of the

celebrity’s motivations, whether the celebrity despises and actively avoids the paparazzo, is

indifferent or unaware, or in fact enjoys having his picture taken. This prediction is based

only on the paparazzo’s utility function and the incentive compatibility constraints.

Note that by Fact 3, this prediction holds even if the paparazzo’s utility function has the

form u(x, y) = v(x)+w(y)−(x−y)2, where v(x) is a function only of x and w(y) is a function

only of y. For example, the paparazzo might prefer locations in his own neighborhood, or

prefer that the celebrity be in a location with good natural light. The essential aspect of the

utility function which drives the result is the negative coefficient −2 on the xy term.

Now make the situation slightly more complicated. Say the celebrity’s talent agency hires

a security thug to harass paparazzi. As before, the paparazzo chooses a location x ∈ X ⊂ <,

but now has to think about the celebrity’s location y1 and the security thug’s location
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y2, where y = (y1, y2) ∈ Y ⊂ <2. Say that the paparazzo’s utility function is u(x, y) =

−(x − y1)
2 + k(x − y2)

2, where k ≥ 0 is a parameter indicating how much the paparazzo

worries about the security thug. The paparazzo wants to be close to the celebrity but far

from the security thug. We can write u(x, y) = −x2 +2xy1− y2
1 + kx2− 2kxy2 + ky2

2. Hence

by Fact 3 we know 2covp(x,y1)− 2k covp(x,y2) ≥ 0 and thus covp(x,y1) ≥ k covp(x,y2).

This prediction is easy to interpret. If the paparazzo pursues the celebrity and avoids the

security thug, we have covp(x,y1) ≥ 0 and covp(x,y2) ≤ 0, and this is possible regardless

of how large k is. It is impossible to have covp(x,y1) < 0 and covp(x,y2) > 0; it can never

be that the paparazzo and celebrity negatively covary and the paparazzo and the security

thug positively covary. If covp(x,y1) and covp(x,y2) are both positive, then covp(x,y1) must

be sufficiently high; the more the paparazzo worries about the security thug, the higher k

is, and the higher covp(x,y1) must be to make the harassment risk worthwhile. Finally,

if covp(x,y1) and covp(x,y2) are both negative, then again covp(x,y1) must be sufficiently

high. For small k, it cannot be that the paparazzo’s covariance with the security thug

is slightly negative but his covariance with the celebrity is very negative; by avoiding the

security thug he cannot pay too high a price in terms of celebrity access. As k increases, the

paparazzo tolerates greater avoidance of the celebrity in order to avoid the security thug.

Some special cases are interesting. If covp(x,y2) = 0, then we have the same prediction

as before, covp(x,y1) ≥ 0; if the paparazzo and security thug are uncorrelated, we can think

of this as the security thug imposing a dead-weight cost on the paparazzo which is the same

whatever the paparazzo does and therefore does not affect his decision. If the security thug

and celebrity are always together, then covp(x,y1) = covp(x,y2). Hence if k < 1, we must

have covp(x,y1) ≥ 0; the security thug is not a sufficient deterrent. If k > 1, the security

thug is scary enough and we have covp(x,y1) ≤ 0.

We can also identify k given observed behavior. As mentioned above, if covp(x,y1) ≥ 0

and covp(x,y2) ≤ 0, then there is no restriction on k. If we observe covp(x,y1) < 0 and

covp(x,y2) > 0, this is impossible and thus we must reject our utility function. If covp(x,y1)

and covp(x,y2) are both positive, we can conclude that k ≤ covp(x,y1)/covp(x,y2). If the

paparazzo covaries weakly with the celebrity but strongly with the security thug, then k

must be small; the paparazzo must not care much about the security thug since he doesn’t

mind covarying with him even for a low reward. If covp(x,y1) and covp(x,y2) are both

negative, we conclude that k ≥ covp(x,y1)/covp(x,y2). If the paparazzo covaries strongly
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negatively with the celebrity and weakly negatively with the security thug, then k must be

large, since the paparazzo pays a high price avoiding the celebrity just to slightly avoid the

security thug.

Again, all of the conclusions here are robust, independent of any assumption about

prior beliefs, the motivations of the celebrity and security thug and whether they choose

consciously or not, whether they purposefully coordinate their locations or not, how the

paparazzo learns about the celebrity and security thug, the definitions of X and Y , and so

forth. The only assumptions here are the paparazzo’s utility function itself and incentive

compatibility. This robustness is nice for making predictions but especially desirable for

identification. Our restrictions on k above hold under extremely weak assumptions and thus

are almost unarguable. Our restrictions on k are also easy to compute and understand; find-

ing restrictions on k using a more standard approach, involving assumptions about beliefs,

utility “shocks” and error terms, would be much more complicated.

Strategic form games

In the standard finite strategic form game, we have a finite set of people N = {1, . . . , n},
each with a finite strategy set Ai and each with a utility function ui : A → <, where

A = ×i∈NAi. To put a strategic form game in our framework, for each player i ∈ N we

simply let X = Ai, Y = A−i, and u = ui, where A−i = ×j∈Nr{i}Aj . We thus have a set of

constraints ICi for each person i. A probability distribution p which satisfies ICi for all i ∈ N

is called a correlated equilibrium (Aumann 1974). As is well known, any distribution over A

resulting from a pure strategy or mixed strategy Nash equilibrium, or convex combination

of Nash equilibria, is a correlated equilibrium. We define the random variable ai : A → Ai

as ai(a) = ai. Given a game u, we say CE(u) is the set of correlated equilibria.

Consider the example 2 × 2 games below. In the first game, “chicken,” given u1 and

the resulting IC constraints for person 1, we conclude using Fact 1 that covp(a1, a2) ≤ 0.

Given u2 and the resulting IC constraints for person 2, we conclude using Fact 1 that

covp(a2, a1) ≤ 0. Hence we have covp(a1, a2) ≤ 0 for all correlated equilibria p of this game.

Similarly we conclude that covp(a1, a2) ≥ 0 for all correlated equilibria p of the second game,

“battle of the sexes.”
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0 1

0 3, 3 1, 4

1 4, 1 0, 0

covp ≤ 0

0 1

0 2, 1 0, 0

1 0, 0 1, 2

covp ≥ 0

0 1

0 1, 0 0, 1

1 0, 1 1, 0

covp = 0

0 1

0 5, 0 5, 8

1 6, 4 6, 4

covp = 0

0 1

0 5, 3 7, 3

1 5, 2 7, 2

CE(u) = P

In the third game, “matching pennies,” given u1 and the resulting IC constraints for person

1, we conclude using Fact 1 that covp(a1, a2) ≥ 0. Given u2 and the resulting IC constraints

for person 2, we conclude using Fact 1 that covp(a2, a1) ≤ 0. Hence covp(a1, a2) = 0 for

all correlated equilibria p of this game. In this game the unique correlated equilibrium is

the mixed strategy Nash equilibrium, in which people’s actions are chosen independently

and hence have zero covariance. In the fourth game, the correlated equilibria are those

distributions which place weight only on (1, 0) and (1, 1), since for person 1 action 0 is

strongly dominated. Since there is no variation in person 1’s action, the covariance between

their actions is zero. In the fifth game, both u1 and u2 are trivial and CE(u) = P , that is,

every distribution is a correlated equilibrium.

To identify 2 × 2 games, it turns out that a signed covariance is sufficient to identify a

game’s pure strategy Nash equilibria. In other words, if one observes a nonzero covariance

between two people’s actions in a 2 × 2 game, we need not care if their actions result from

pure strategy Nash equilibria, mixed strategy Nash equilibria, correlated equilibria, or a

mixture of all of these. The signed covariance itself is enough to locate pure Nash equilibria,

knowing nothing else about the game. The proof of Fact 5 is in the appendix.

Fact 5. Say n = 2, A1 = {a1, b1}, A2 = {a2, b2}, and p ∈ CE(u). If covp(1a1 ,1a2) > 0, then

(a1, a2) and (b1, b2) are Nash equilibria of u. If covp(1a1 ,1a2) < 0, then (a1, b2) and (b1, a2)

are Nash equilibria of u.

After identifying a 2 × 2 game to the extent possible given observations, what can we

predict? From Fact 2, if we observe for example positive covariance in some correlated

equilibrium, in any such game consistent with this observation, in any correlated equilibrium

of any such game, we can predict nonnegative covariance (as long as the game is nontrivial).

In other words, observing a signed covariance is enough to make predictions about future

play in the game, without knowing anything else about the game or assuming anything other

than nontriviality.
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For an example of a three-person game, consider the following “Three Player Matching

Pennies Game” (Moreno and Wooders 1998).

0 1

0 1, 1,−2 −1,−1, 2

1 −1,−1, 2 −1,−1, 2

0

0 1

0 −1,−1, 2 −1,−1, 2

1 −1,−1, 2 1, 1,−2

1

The Proposition says that cov(a1, u1(1, a2, a3) − u1(0, a2, a3)) ≥ 0 in any correlated

equilibrium. In this game, u1(1, a2, a3) − u1(0, a2, a3) = −2(1 − a2)(1 − a3) + 2a2a3 =

−2+2a2+2a3. Since −2 is a constant, we have cov(a1, 2a2+2a3) ≥ 0 and thus cov(a1, a2)+

cov(a1, a3) ≥ 0. Similarly, we find that cov(a1, a2) + cov(a2, a3) ≥ 0. We also know that

cov(a3, u3(a1, a2, 1)− u3(a1, a2, 0)) ≥ 0 and that u3(a1, a2, 1)− u3(a1, a2, 0) = 4(1− a1)(1−
a2)−4a1a2 = 4−4a1−4a2. Thus cov(a1, a3)+cov(a2, a3) ≤ 0. So we have three inequalities

on the three covariances cov(a1, a2), cov(a1, a3), and cov(a2, a3). From these inequalities,

we conclude that cov(a1, a2) is nonnegative and either cov(a1, a3) or cov(a2, a3) or both are

nonpositive for all correlated equilibria.

Now consider games with quadratic utility functions. Quadratic utility functions are

often found in applications, for example Cournot oligopoly games with linear demand func-

tions and quadratic costs (see Liu 1996 and Yi 1997 on the uniqueness of correlated equilibria

in Cournot oligopoly games and Neyman 1997 on potential games generally). Any game in

which best response functions are linear (see for example Manski 1995, p. 116) is naturally

represented with quadratic utility functions. Fact 3 says that if a single player has a quadratic

utility function, for example u1(a1, a2) = k12a1a2 + k11(a1)
2 + k22(a2)

2 + k1a1 + k2a2 + k0,

then we can conclude that k12 covp(a1, a2) ≥ 0 for all correlated equilibria of the game. This

is true regardless of person 2’s utility function. So assuming that person 1 has a quadratic

utility function and k12 6= 0, we have three results. If k12 > 0, we predict a nonnegative

covariance. If we observe positive covariance, we conclude k12 > 0. If we observe a positive

covariance, in all games consistent with this observation, in any correlated equilibrium of

any such game, we must have nonnegative covariance.

For another example, say that n = 3, u1(a1, a2, a3) = a1a3−a1a2−(a1)
2, u2(a1, a2, a3) =

a1a2 − a2a3 − (a2)
2, and u3(a1, a2, a3) = −(a2 − a3)

2. By Fact 3, we know that

cov(a1, a3) − cov(a1, a2) ≥ 0, cov(a1, a2) − cov(a2, a3) ≥ 0, and 2cov(a2, a3) ≥ 0. Thus
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we can conclude that cov(a1, a2), cov(a1, a3), and cov(a2, a3) are all nonnegative in any

correlated equilibrium.

Games with incomplete information

In the standard finite game with incomplete information, we have a finite set of people

N = {1, . . . , n} and a finite state space Ω. Each person i ∈ N has a finite strategy set Ai, a

prior belief πi on Ω, a utility function ui : A× Ω → <, and a partition Pi of Ω representing

what she knows about the world. Person i’s strategy is defined as a function fi : Ω → Ai

which is measurable with respect to Pi, and equilibrium is defined in the standard way. A

common example is to say that each person has a “type” in Ti and that each person only

knows her own type; in this case Ω = ×i∈NTi and Pi = {{ti} × T−i}ti∈Ti
, and a person’s

strategy can be thought of as a function from Ti to Ai.

To put a game with incomplete information into our framework, for each person i ∈ N

we let X = Ai, Y = A−i × Ω, and u = ui. We thus have a set of constraints ICi for each

person i. The probability distribution p on A× Ω is called a mechanism or mediation plan

(see for example Myerson 1991), and a mediation plan which satisfies ICi for all i ∈ N is

called an incentive compatible mediation plan. As is well known, in any equilibrium of the

incomplete information game, the resulting distribution over A×Ω is an incentive compatible

mediation plan. In addition, any equilbrium behavior given any kind of communication

device or information sharing results in an incentive compatible mediation plan. Note that

Y = A−i ×Ω and there is no distinction necessary between the actions of other players and

exogenous uncertainty.

Here we use a Cournot oligopoly example to contrast our signed covariance approach with

the standard equilibrium approach. Say firm 1 produces quantity q1 and firm 2 produces q2,

and given these quantities, the market price is 60− (q1 + q2). Firm 1 has a unit production

cost of s1 and firm 2 has a unit production cost of s2; these costs randomly vary. Their payoffs

are thus given by u1(q1, q2) = (60− q1− q2)q1− s1q1 and u2(q1, q2) = (60− q1− q2)q2− s2q2.

How do the firm quantities q1, q2 depend on each other and on the costs s1, s2? The

standard way to answer this question is to model the situation as an incomplete information

game and find equilibria. Because of the uncertainty about costs s1, s2, we must specify the

firms’ prior beliefs on s1, s2 and what they know about s1, s2.

13



The simplest case is when the costs s1, s2 are common knowledge, even though they

randomly vary. With a bit of calculation, we find equilibrium quantities q∗1 = 20+s2/3−2s1/3

and q∗2 = 20 + s1/3− 2s2/3. This is true regardless of firms’ prior beliefs; beliefs are not an

issue here since s1, s2 are always common knowledge. If we let s1, s2 take on values 0, 6, and

12, the equilibrium quantities q∗1, q
∗
2 as a function of s1, s2 are shown in the table below.

s1 s2 q∗1 q∗2
0 0 20 20

0 6 22 16

0 12 24 12

6 0 16 22

6 6 18 18

6 12 20 14

12 0 12 24

12 6 14 20

12 12 16 16

How do the results in this table compare with results from our approach? We can write

u1(q1, q2) = 60q1−(q1)
2−q2q1−s1q1, and thus Fact 3 says that −covp(q1,q2)−covp(q1, s1) ≥

0 for any incentive compatible p. Thus covp(q1,q2) + covp(q1, s1) ≤ 0. In other words,

either covp(q1,q2) or covp(q1, s1) or both must be nonpositive. Similarly for firm 2, we get

covp(q1,q2) + covp(q2, s2) ≤ 0.

Note that in the first three rows of the table above, s1 does not vary. Thus if (s1, s2)

is distributed only among these three rows, we have covp(q1, s1) = 0 and thus we must

have covp(q1,q2) ≤ 0, which is what we observe in the first three rows: as q1 increases, q2

decreases. Note that covp(q1,q2) > 0 is possible, for example if (s1, s2) is distributed only

among (0, 0), (6, 6), (12, 12), the first, fifth, and last row of the table. In this case, covp(q1, s1)

and covp(q2, s2) must both be negative, which is what we see in the table.

Now consider the case when firm 1 knows only s1 but firm 2 knows both s1 and s2.

Now we must specify the firms’ prior beliefs: assume that s1 and s2 are distributed among

0, 6, 12, and each of the nine possible states of the world occurs with probability 1/9. We

can compute the Bayesian Nash equilibrium, as shown in the table below. Note that q∗1 does

not vary with s2 because Firm 1 does not know s2.

14



s1 s2 q∗1 q∗2
0 0 22 19

0 6 22 16

0 12 22 13

6 0 18 21

6 6 18 18

6 12 18 15

12 0 14 23

12 6 14 20

12 12 14 17

How do the results in this table compare with our approach? In this equilibrium,

and given our prior belief that each state occurs with probability 1/9, we compute

covp(q1,q2) = −16/3, covp(q1, s1) = −16 and covp(q2, s2) = −12, consistent with our

results that covp(q1,q2) + covp(q1, s1) ≤ 0 and covp(q1,q2) + covp(q2, s2) ≤ 0.

Finally, consider the case when firm 1 only knows s1 and firm 2 only knows s2. Prior

beliefs are as before. The Bayesian Nash equilibrium is shown in the table below.

s1 s2 q∗1 q∗2
0 0 21 21

0 6 21 18

0 12 21 15

6 0 18 21

6 6 18 18

6 12 18 15

12 0 15 21

12 6 15 18

12 12 15 15

How do the results in this table compare with our approach? In this equilibrium, and

given our prior beliefs, we find covp(q1,q2) = 0, covp(q1, s1) = −12 and covp(q2, s2) = −12,

again consistent with our results that covp(q1,q2) + covp(q1, s1) ≤ 0 and covp(q1,q2) +

covp(q2, s2) ≤ 0.

In these three cases, computing equilibria is not difficult, and the equilibria of course

provide more precise predictions than the signed covariances. But more complicated sce-

narios exist. What if the costs s1 and s2 are correlated? What if whether a firm knows

its own or the other firm’s cost depends on what exactly the cost is? What if the firms

communicate their costs to each other with noise? What if the firms employ a mediator
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which recommends actions to take? What if the firms condition their actions on some com-

monly observed external signal? What if the firms do not have a common prior on s1, s2?

What if the costs s1, s2 are manipulated by some third party with its own objectives? For

each possible scenario, we would have to specify explicitly the prior beliefs, the incomplete

information, how the mediator sends signals, and so forth, and find one or more equilibria

which predict how q1, q2 depend on s1, s2.

The signed covariance approach makes less precise predictions. But it applies to all the

scenarios above, including all possible prior beliefs, all possible specifications of incomplete

information, all possible mediation and communication systems, and so forth. By using

the IC constraints directly, we can make predictions which hold for all possible scenarios,

without any assumptions other than incentive compatibility and the utility function itself.

Another incomplete information game often studied (see Bresnahan and Reiss 1991,

Tamer 2003) is below, where u1, u2 are considered random “utility shocks.”

0 1

0 0, 0 0, x2β2 − u2

1 x1β1 − u1, 0 x1β1 + ∆1 − u1, x2β2 + ∆2 − u2

We have covp(a1, (x1β1−u1)(1−a2)+(x1β1+∆1−u1)a2) ≥ 0 from the Proposition. But

covp(a1, (x1β1−u1)(1− a2) + (x1β1 + ∆1−u1)a2) = −covp(a1,u1) + ∆1 covp(a1, a2). Thus

we have ∆1 covp(a1, a2) ≥ covp(a1,u1). Similarly we have ∆2 covp(a1, a2) ≥ covp(a2,u2).

Thus if covp(a1, a2) > 0, we conclude that ∆1 ≥ covp(a1,u1)/covp(a1, a2) and ∆2 ≥
covp(a2,u2)/covp(a1, a2).

Thus we can bound ∆1, ∆2 simply by computing covariances. In terms of prediction,

we can similarly bound covp(a1, a2); for example if ∆1, ∆2 have different signs, we have an

upper and lower bound for covp(a1, a2). We make these conclusions without any assumption

about the distributions of u1, u2, the values of x1, β1, x2, β2, what each person knows about

the realizations of u1, u2, whether the people can talk to each other, and so forth.
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Linear combinations of games

Sometimes it is convenient to express payoffs in a game as the linear combination of

payoffs from several simpler games. For example, DeNardo (1995) surveys expert and student

preferences over whether the United States and Soviet Union should build weapons systems

such as the MX missile, and finds that the great variety of preferences are understandable

as convex combinations of certain “strategic extremes” such as the “Pure Dove” and the

“Strong Hawk,” shown below (the payoffs here are the US’s payoffs).

SU builds SU doesn’t

US builds 1 1

US doesn’t 1 4

Pure Dove

SU builds SU doesn’t

US builds 3 4

US doesn’t 1 2

Strong Hawk

Here the Pure Dove prefers for neither side to build the weapon, and any side building

the weapon is equally bad. For the Strong Hawk, US superiority is most preferred, both

having the weapon is second best, and the worst is for the US to not have the weapon

while the Soviet Union does. Let α be the weight given to Pure Dove and 1 − α be the

weight given to Strong Hawk, where α ∈ [0, 1]. Say the US is person 1 and the Soviet

Union is person 2. Say that building is strategy 1 and not building is strategy 0. In

Pure Dove, u1(1, a2) − u1(0, a2) = −3(1 − a2). In Strong Hawk, u1(1, a2) − u1(0, a2) = 2.

Hence in the game which is a convex combination of Pure Dove and Strong Hawk, we have

covp(a1, a2) = αcovp(a1,−3(1−a2))+(1−α)covp(a1, 2) ≥ 0. Thus we get 3α covp(a1, a2) ≥ 0.

If α > 0, we know covp(a1, a2) ≥ 0. If α = 0, in any correlated equilibrium, the US always

builds and hence covp(a1, a2) = 0. Regardless of what α is, and regardless of the Soviet

Union’s payoffs, we can conclude that the US and SU actions are nonnegatively correlated.

For another example, say that we observe people playing a 2× 2 game. We do not know

exactly which game they are playing: possibly chicken, battle of the sexes, matching pennies,

or some mixture of the three. Say that the game is a convex combination, with chicken having

weight α, battle of sexes having weight β, and matching pennies having weight 1 − α − β,

as shown below.

0 1

0 3, 3 1, 4

1 4, 1 0, 0

α

0 1

0 2, 1 0, 0

1 0, 0 1, 2

β

0 1

0 1, 0 0, 1

1 0, 1 1, 0

1− α− β
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From the Proposition, we have α covp(a1, 1 − 2a2)) + β covp(a1,−2 + 3a2) + (1 − α −
β)covp(a1,−1 + 2a2) ≥ 0. Hence (2 − 4α + β)covp(a1, a2) ≥ 0. From the Proposition we

also have α covp(a2, 1 − 2a1)) + β covp(a2,−1 + 3a1) + (1 − α − β)covp(a2, 1 − 2a1) ≥ 0.

Hence (5β − 2)covp(a1, a2) ≥ 0. Thus if we observe a positive covariance, we can conclude

that β ≥ 2/5 and α ≤ 3/5. If we observe a negative covariance, we can conclude that

β ≤ 2/5 and α ≥ 3/5. In other words, a positive covariance indicates that the battle of

the sexes “component” is relatively large, while a negative covariance indicates that it is

relatively small. This result is intuitive and straightforward, and indeed the question here

of estimating α and β given observations should be a simple one. The standard method of

finding equilibria requires a much more complicated random utility model.

Local interaction games

A local interaction game can be thought of as each person playing the same 2× 2 game

with each of his neighbors (see for example Young 1998 and Morris 2000). For each person

i ∈ N , let Ai = {0, 1} and let N(i) ⊂ N be person i’s neighbors (we assume i 6∈ N(i)).

Payoffs are defined as ui(a) =
∑

j∈N(i) vi(ai, aj).

The Proposition says that
∑

j∈N(i) covp(ai, vi(1, aj) − vi(0, aj)) ≥ 0. But we know

vi(1, aj)− vi(0, aj) = (vi(1, 0)− vi(0, 0))(1−aj)+(vi(1, 1)− vi(0, 1))aj = vi(1, 0)− vi(0, 0)+

[vi(0, 0) − vi(1, 0) + vi(1, 1) − vi(0, 1)]aj . Since vi(1, 0) − vi(0, 0) is a constant, we have

[vi(0, 0)− vi(1, 0) + vi(1, 1)− vi(0, 1)]covp(ai,
∑

j∈N(i) aj) ≥ 0.

Thus in any local interaction game, given the neighborhood N(i) and the payoffs vi, we

can sign the covariance between a person’s action and the sum of his neighbors’ actions, as

long as vi(0, 0)−vi(1, 0)+vi(1, 1)−vi(0, 1) 6= 0. For example, if vi is a coordination game, with

Nash equilibria (0, 0) and (1, 1), it must be that person i’s action is nonnegatively correlated

with the sum of her neighbors’ actions. Going in the other direction, given observed actions

and the neighbors N(i) of person i, we can sign vi(0, 0)− vi(1, 0) + vi(1, 1)− vi(0, 1). Given

observed actions and payoffs vi, we can identify possible sets of neighbors N(i).

On October 1, 3, and 5, 2001, I collected data on whether people in census tract 7016.01

(in Santa Monica, California) displayed flags on their residences, as shown in Figure 1. A

plus sign indicates a residence which displays a United States flag or some other red, white,

and blue decoration; a dot indicates a residence which does not. There are 1174 total

residences in the data set, which is available from the author. The residences in this census
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tract are primarily single-family homes, although 93 buildings in my data set are multi-unit

buildings such as townhouses or apartment buildings. A data point here is an individual

building; for example, when a flag appears on an apartment building, the entire building

is counted as displaying a flag and no attempt is made to figure out which apartment in

the building is displaying the flag and which ones are not. Only residential buildings are

included. According to the 2000 US Census, 3957 people live in this census tract and there

are a total of 1863 housing units.

-118.485 -118.48 -118.475
34.032

34.036

34.04

34.044

+   flag displayed
 .   flag not displayed

Longitude

La
tit

ud
e

Figure 1. Flag display in census tract 7016.01
(Santa Monica, California), October 1, 3, 5, 2001
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In my data, 362 of the 1174 residences (30.8 percent) display flags. Inspecting Figure 1,

it seems that a person’s choice of whether to display a flag depends on whether her neighbors

display a flag; for example, there are some blocks in which nearly everyone displays a flag,

which would be unlikely if people’s decisions were independent.

We can model this as a local interaction game, where putting up a flag is strategy 1

and not putting up one is strategy 0, and payoffs are v(0, 0), v(0, 1), v(1, 0), v(1, 1) (assume

these payoffs are the same for everyone). Let N(i), the neighbors of i, be the houses on the

same block adjacent to i. In our data, 947 of the 1174 residences have two neighbors in this

sense, 220 have one neighbor, and 7 have no neighbors. We find that covp(ai,
∑

j∈N(i) aj) =

(250/1174) − (362/1174)(655/1174) ≈ 0.0409; in other words, the covariance between a

person’s action and the actions of his neighbors is positive. Hence v(0, 0)−v(1, 0)+v(1, 1)−
v(0, 1) ≥ 0. Since both strategy 1 and strategy 0 are observed, we assume that neither is

strongly dominated, and hence we conclude that v(0, 0) ≥ v(1, 0) and v(1, 1) ≥ v(0, 1), or in

other words, v is a coordination game with two pure Nash equilibria (0, 0) and (1, 1).

To identify v(0, 0), v(0, 1), v(1, 0), v(1, 1) more precisely, we can directly use the IC in-

equalities. Of the residences which put up flags, on average 250/362 ≈ 0.691 of their neigh-

bors also put up flags and 405/362 ≈ 1.119 of their neighbors do not put up flags. Hence we

have the inequality (250/362)v(1, 1)+(405/362)v(1, 0) ≥ (250/362)v(0, 1)+(405/362)v(0, 0).

Of the residences which do not put up flags, on average 405/812 ≈ 0.499 of their neighbors

put up flags and 1054/812 ≈ 1.298 of their neighbors do not put up flags. Hence we have

the inequality (405/812)v(0, 1) + (1054/812)v(0, 0) ≥ (405/812)v(1, 1) + (1054/812)v(1, 0).

We can normalize v(0, 1) = v(1, 0) = 0; assuming that v(0, 0) 6= 0, we can also normalize

v(0, 0) = 1. We thus have v(1, 1) ∈ [405/250, 1054/450] ≈ [1.620, 2.342]. Note that if we

assume Nash equilibrium instead of the IC inequalities, we cannot identify the magnitude

of v(1, 1) because any positive v(1, 1) is consistent with (1, 1) being a Nash equilibrium.

We might suppose a more complicated model; for example a person’s immediate neigh-

bors might affect her payoff more than people who live two houses away. Say that

person i has immediate neighbors N(i) and peripheral neighbors NN(i). Say that a

person gets payoffs v(0, 0), v(0, 1), v(1, 0), v(1, 1) from immediate neighbors and payoffs

vv(0, 0), vv(0, 1), vv(1, 0), vv(1, 1) from peripheral neighbors, and assume for convenience

that v(0, 1) = v(1, 0) = vv(0, 1) = vv(1, 0) = 0. So if a person puts up a flag and one

of her immediate neighbors and two of her peripheral neighbors put up flags, she gets
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payoff v(1, 1) + 2vv(1, 1) for example. From the Proposition, we know that (v(0, 0) +

v(1, 1))covp(ai,
∑

j∈N(i) aj) + (vv(0, 0) + vv(1, 1))covp(ai,
∑

j∈NN(i) aj) ≥ 0. Let N(i) again

be the houses on the same block adjacent to i and let NN(i) be the houses on the same block

two houses away from i on either side. In the data, we have covp(ai,
∑

j∈N(i) aj) ≈ 0.0409 and

covp(ai,
∑

j∈NN(i) aj) ≈ 0.0278. Thus 0.0409(v(0, 0)+v(1, 1))+0.0278(vv(0, 0)+vv(1, 1)) ≥
0. This it cannot be that both v and vv are “anticoordination” games (games in which (0, 1)

and (1, 0) are the pure Nash equilibria). If we assume v(0, 0) = v(1, 1) and vv(0, 0) = vv(1, 1)

for simplicity, we have 0.0409v(0, 0) + 0.0278vv(0, 0) ≥ 0. If vv is an anticoordination game

with vv(0, 0) = −1, then v must be at least a “weak” coordination game with v(0, 0) ≥ 0.680.

If v is an anticoordination game with v(0, 0) = −1, then vv must be a relatively “strong”

coordination game with vv(0, 0) ≥ 1.471.

Conclusion: statistical game theory

The most common solution concepts in game theory and choice theory are “point” pre-

dictions which predict a single action for each person, as in Nash equilibrium. However, when

we analyze data, we typically look not at each particular data point by itself but at the sta-

tistical relationships among different variables given all the data. This paper works toward a

“statistical game theory” which makes predictions given a game, and identifies games given

data, fundamentally in terms of statistical relationships. This paper demonstrates a relation-

ship between the fundamental game-theoretic concept of incentive compatibility (revealed

preference in choice-theoretic terms) and the fundamental statistical concept of covariance.

Most work on applying games to empirical data is based on point predictions such as

Nash equilibrium. Thus explaining observed variation requires adding exogenous random-

ness or heterogeneity, for example by allowing random mistakes or by allowing payoffs in a

game to vary randomly (for example Bresnahan and Reiss 1991, Lewis and Schultz 2003,

McKelvey and Palfrey 1995, Signorino 2003, Tamer 2003). This paper shares the motivations

of this literature, and as explored in earlier examples, has direct application for example to

models with random utilities. This paper, however, derives statistical relationships not from

randomness added on to a game but from what is inherent in the game itself, assuming

nothing more than incentive compatibility.

There are three advantages to using incentive compatibility constraints instead of a point-

prediction approach. First, since the set of incentive compatible distributions is convex, any
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aggregation of incentive compatible distributions is also incentive compatible. For example, if

each group of individuals in a population is playing an incentive compatible distribution, or if

each play in a sequence of trials is an incentive compatible distribution, then the distribution

aggregated over the population or over the sequence is incentive compatible. One need not

worry about whether a given observation is an individual or aggregate, since they can be

treated in the same way. This is not usually true for point predictions; for example, the set

of Nash equilibria is not convex.

Second, the assumptions here are much weaker than the assumptions behind Nash equi-

librium. All Nash equilibria of any game, including games of incomplete information, satisfy

the incentive compatibility constraints, and all of the results in this paper still hold if we

more traditionally assume Nash equilibria and their mixtures. If people play a mixture of

several pure strategy and mixed strategy Nash equilibria, instead of figuring out how this

mixture can result from the various Nash equilibria, we can simply use the mixture directly

and calculate covariances to identify the game.

Third, typically the existence of multiple equilibria is considered a shortcoming which

needs to be somehow fixed. For example, when applying games to empirical data, because of

multiple equilibria, the distribution of equilibria cannot be exactly determined by assump-

tions about how the game is distributed (see for example Tamer 2003). There has been

much work in game theory developing criteria for selecting one of several equilibria. The

statistical approach here completely avoids this issue, and considers not one but all possible

incentive compatible distributions. The statistical approach is concerned not with any single

predicted action but with statistical relationships among actions; a wide range of possible

actions is something to be embraced, not avoided.

Incentive compatibility is a fundamental concept, and since it is defined as a set of linear

inequalities, it is mathematically simple compared to Nash equilibrium for example, which

is the fixed point of a correspondence. However, even people familiar with the concept

find it difficult to intuitively “visualize,” even in the simplest case of a 2 × 2 game (see

Nau, Gomez-Canovas, and Hansen 2004 and Calvó-Armengol 2003). This paper shows how

incentive compatibility can be understood in “reduced form” as a signed covariance.
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Calvó-Armengol, Antoni. 2003. “The Set of Correlated Equilibria of 2×2 Games.” Working

paper, Universitat Autònoma de Barcelona.
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Appendix

To prove the Proposition, we first define φ((x, y), (x′, y′)) and derive two lemmas. Given

p ∈ P and (x, y), (x′, y′) ∈ X × Y , define φ((x, y), (x′, y′)) = p(x, y)p(x′, y′)− p(x, y′)p(x′, y).

Lemma 1 says that the incentive compatibility constraints imply a linear inequality on

φ((x, y), (x′, y′)).

Lemma 1. If p, u satisfy IC, then
∑

y∈Y (u(x, y)− u(x′, y))φ((x, y), (x′, y′)) ≥ 0.

Proof. We write IC as
∑

y∈Y p(x, y)(u(x, y) − u(x′, y)) ≥ 0. Multiplying both sides by

p(x′, y′), we have
∑

y∈Y p(x, y)p(x′, y′)(u(x, y) − u(x′, y)) ≥ 0. We call this inequality (∗).
Similarly, we have the IC inequality

∑
y∈Y p(x′, y)(u(x′, y)− u(x, y)) ≥ 0. Multiplying both

sides by p(x, y′), we have
∑

y∈Y p(x, y′)p(x′, y)(u(x′, y)−u(x, y)) ≥ 0. We call this inequality

(∗∗). Add the inequalities (∗) and (∗∗) together and we are done. �

Lemma 2 says that the covariance of two random variables is a linear function of the

φ((x, y), (x′, y′)). Lemma 2 is well known (see for example C. M. Fortuin, P. W. Kasteleyn,

and J. Ginibre 1971), but we state and prove it here for the sake of completeness. We say a

random variable f : X × Y → < is constant in y if f(x, y) = f(x, y′) for all x ∈ X, y, y′ ∈ Y .

We say a random variable g : X × Y → < is constant in x if g(x, y) = g(x′, y) for all

x, x′ ∈ X, y ∈ Y .

Lemma 2. Say that f : X × Y → < is constant in y and g : X × Y → < is constant in

x. Say that Z = X0 × Y 0, where X0 ⊂ X, Y 0 ⊂ Y , and p(Z) > 0. Then covp(f,g|Z) =

[1/(4p(Z)2)]
∑

(x,y),(x′,y′)∈Z(f(x, y)− f(x′, y′))(g(x, y)− g(x′, y′))φ((x, y), (x′, y′)).

Proof. Let k =
∑

(x,y),(x′,y′)∈Z(f(x, y) − f(x′, y′))(g(x, y) − g(x′, y′))p(x, y)p(x′, y′). We ex-

pand this and get k =
∑

f(x, y)g(x, y)p(x, y)p(x′, y′) −
∑

f(x, y)g(x′, y′)p(x, y)p(x′, y′) −∑
f(x′, y′)g(x, y)p(x, y)p(x′, y′) +

∑
f(x′, y′)g(x′, y′)p(x, y)p(x,′ y′) =

p(Z)2[Ep(fg|Z)− Ep(f|Z)Ep(g|Z)− Ep(f|Z)Ep(g|Z) + Ep(fg|Z)] = 2p(Z)2covp(f,g|Z). Let

there be a one-to-one function m : X0 → {1, 2, . . . , #X0} which assigns a unique number

to each member of X0. Note that k = (
∑

(x,y),(x′,y′)∈Z:m(x)>m(x′) +
∑

(x,y),(x′,y′)∈Z:m(x)<m(x′)

+
∑

(x,y),(x′,y′)∈Z:m(x)=m(x′))(f(x, y) − f(x′, y′))(g(x, y) − g(x′, y′))p(x, y)p(x′, y′). The third

sum is zero because f is constant in y and m(x) = m(x′) implies x = x′.
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If we let (v, w) = (x′, y) and (v′, w′) = (x, y′), then the second sum can be written as∑
(v,w),(v′,w′)∈Z:m(v)>m(v′)−(f(v, w)− f(v′, w′))(g(v, w)− g(v′, w′))p(v′, w)p(v, w′), because f

is constant in y and g is constant in x. Changing variables again, where (x, y) = (v, w) and

(x′, y′) = (v′, w′), the second sum is
∑

(x,y),(x′,y′)∈Z:m(x)>m(x′)(f(x, y) − f(x′, y′))(g(x, y) −
g(x′, y′))(−p(x′, y)p(x, y′)). Thus k =

∑
(x,y),(x′,y′)∈Z:m(x)>m(x′)(f(x, y) − f(x′, y′))(g(x, y) −

g(x′, y′))φ((x, y), (x′, y′)) = (1/2)
∑

(x,y),(x′,y′)∈Z(f(x, y) − f(x′, y′))(g(x, y) − g(x′, y′))

φ((x, y), (x′, y′)). Since k = 2p(Z)2covp(f,g|Z), we are done. �

Proposition. Say p, u satisfy IC and x, x′ ∈ X. Then

covp(1x, u(x,y)− u(x′,y)|{x, x′} × Y ) ≥ 0.

Proof. If p({x, x′}×Y ) = 0, we are done, by our convention that covp(f,g|Z) = 0 if p(Z) = 0.

So assume that p({x, x′} × Y ) > 0. Lemma 2 says covp(1x, u(x,y)− u(x′,y)|{x, x′} × Y ) =

[1/(4p({x, x′}×Y )2](1−0)
∑

y,y′∈Y [(u(x, y)−u(x′, y))−(u(x, y′)−u(x′, y′))]φ((x, y), (x′, y′)).

It suffices to show that this sum is nonnegative.

From Lemma 1, we know that
∑

y∈Y (u(x, y) − u(x′, y))φ((x, y), (x′, y′)) ≥ 0. Hence∑
y,y′∈Y (u(x, y) − u(x′, y))φ((x, y), (x′, y′)) ≥ 0. Call this inequality (∗). From the

definition of φ((x, y), (x′, y′)), we have φ((x, y), (x′, y′)) = −φ((x′, y), (x, y′)). Hence∑
y,y′∈Y −(u(x, y)− u(x′, y))φ((x′, y), (x, y′)) ≥ 0. If we change variables and let y′ = y and

y = y′, we have
∑

y,y′∈Y −(u(x, y′)−u(x′, y′))φ((x′, y′), (x, y)) ≥ 0. Since φ((x′, y′), (x, y)) =

φ((x, y), (x′, y′)), we have
∑

y,y′∈Y −(u(x, y′) − u(x′, y′))φ((x, y), (x′, y′)) ≥ 0. Call this in-

equality (∗∗). Add (∗) and (∗∗) together and we are done. �

Fact 1. Say X = {x, x′} and Y = {y, y′} and u is nontrivial. Then either covp(1x,1y) ≥ 0

for all p ∈ IC(u) or covp(1x,1y) ≤ 0 for all p ∈ IC(u).

Proof. By the Proposition, we have covp(1x, u(x,y) − u(x′,y)) ≥ 0. It is easy to ver-

ify that u(x,y) − u(x′,y) = (u(x, y) − u(x′, y))1y + (u(x, y′) − u(x′, y′))(1 − 1y). Hence

covp(1x, (u(x, y)−u(x′, y))1y +(u(x, y′)−u(x′, y′))(1−1y)) = (u(x, y)−u(x′, y)−u(x, y′)+

u(x′, y′))covp(1x,1y) ≥ 0. If u(x, y)−u(x′, y)−u(x, y′)+u(x′, y′) 6= 0, we are done. Assume

u(x, y) − u(x′, y) − u(x, y′) + u(x′, y′) = 0. If u(x, y) > u(x′, y), then u(x, y′) > u(x′, y′)
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and thus IC implies p(x′, y) = p(x′, y′) = 0, and thus covp(1x,1y) = 0. Similarly,

if u(x, y) < u(x′, y), we have covp(1x,1y) = 0. Thus we are left with the case when

u(x, y) = u(x′, y), and thus u(x, y′) = u(x′, y′), in which case u is trivial. �

To prove Fact 3, we need Lemma 3.

Lemma 3. Say that X ⊂ < and that f : X × Y → < is constant in y and g : X × Y → < is

constant in x. Then covp(f,g) =
∑

x,x′∈X,x>x′ p({x, x′} × Y )2covp(f,g|{x, x′} × Y ).

Proof. By Lemma 2, we have covp(f,g) = (1/4)
∑

(x,y),(x′,y′)(f(x, y) − f(x′, y′))(g(x, y) −
g(x′, y′))φ((x, y), (x′, y′)) = (1/4)(

∑
(x,y),(x′,y′),x>x′ +

∑
(x,y),(x′,y′),x=x′ +

∑
(x,y),(x′,y′),x<x′).

Since f is constant in y, the second sum is zero. Show that the first sum and the third

sum are equal. If we change variables (x = x′ and x′ = x), the third sum is
∑

x′<x(f(x′, y)−
f(x, y′))(g(x′, y) − g(x, y′)) φ((x′, y), (x, y′)). Since φ((x′, y), (x, y′)) = −φ((x, y), (x′, y′)),

the third sum is
∑

x′<x(f(x, y′)− f(x′, y))(g(x′, y)− g(x, y′))φ((x, y), (x′, y′)), which is equal

to the first sum since f is constant in y and g is constant in x. Hence covp(f,g) =

(1/2)
∑

x>x′(f(x, y)− f(x′, y′))(g(x, y)− g(x′, y′))φ((x, y), (x′, y′)).

By Lemma 2, covp(f,g|{x, x′} × Y ) = [1/(4p({x, x′} × Y )2)]
∑

y,y′∈Y [(f(x, y)− f(x′, y′))

(g(x, y)−g(x′, y′))φ((x, y), (x′, y′))+(f(x′, y)−f(x, y′))(g(x′, y)−g(x, y′))φ((x′, y), (x, y′))] =

[1/(2p({x, x′}×Y )2)]
∑

y,y′∈Y (f(x, y)−f(x′, y′))(g(x, y)−g(x′, y′))φ((x, y), (x′, y′)). Therefore

covp(f,g) =
∑

x>x′ p({x, x′} × Y )2covp(f,g|{x, x′} × Y ). �

Fact 3. Say that X ⊂ <, Y ⊂ <m and u satisfies the condition that u(x, y) − u(x′, y) =

v(x, x′)
∑m

j=1 cjyj + w(x, x′), where cj ∈ < and v(x, x′) > 0 when x > x′. Say p, u satisfy

IC. Then
∑m

j=1 cj covp(x,yj) ≥ 0.

Proof. By the Proposition, we know that covp(1x, v(x, x′)
∑m

j=1 cjyj +w(x, x′)|{x, x′}×Y ) ≥
0. Since v(x, x′) > 0 and w(x, x′) are constants, we have covp(1x,

∑m
j=1 cjyj |{x, x′} × Y ) ≥

0. Hence when x > x′, we have covp(x,
∑m

j=1 cjyj |{x, x′} × Y ) ≥ 0. By Lemma 3, we

have covp(x,
∑m

j=1 cjyj) =
∑

x>x′ p({x, x′} × Y )2covp(x,
∑m

j=1 cjyj |{x, x′} × Y ) ≥ 0. Hence∑m
j=1 cj covp(x,yj) = covp(x,

∑m
j=1 cjyj) ≥ 0. �
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Fact 4. Say that p, u satisfy IC and x, x′ ∈ X. Say that u(x, y)− u(x′, y) is not constant in

y and that p(x′, y) > 0 for y ∈ Y . The following statement is not true:

u(x, y)− u(x′, y) > u(x, y′)− u(x′, y′) ⇔ p(x, y)/p(x′, y) < p(x, y′)/p(x′, y′).

Proof. We know
∑

y,y′∈Y [(u(x, y)−u(x′, y))− (u(x, y′)−u(x′, y′))]φ((x, y), (x′, y′)) ≥ 0 from

the proof of the Proposition. If the statement in Fact 4 is true, then (u(x, y) − u(x′, y)) −
(u(x, y′)− u(x′, y′)) > 0 ⇔ p(x, y)/p(x′, y) < p(x, y′)/p(x′, y′) ⇔ φ((x, y), (x′, y′)) < 0. Since

u(x, y)−u(x′, y) is not constant in y, it must be that
∑

y,y′∈Y [(u(x, y)−u(x′, y))−(u(x, y′)−
u(x′, y′))]φ((x, y), (x′, y′)) < 0, a contradiction. �

Fact 5. Say n = 2, A1 = {a1, b1}, A2 = {a2, b2}, and p ∈ CE(u). If covp(1a1 ,1a2) > 0, then

(a1, a2) and (b1, b2) are Nash equilibria of u. If covp(1a1 ,1a2) < 0, then (a1, b2) and (b1, a2)

are Nash equilibria of u.

Proof. By the Proposition, we have covp(1a1 , u1(a1, a2)−u1(b1, a2)) ≥ 0. It is easy to verify

that u1(a1, a2)−u1(b1, a2) = (u1(a1, a2)−u1(b1, a2))1a2+(u1(a1, b2)−u1(b1, b2))(1−1a2), and

thus covp(1a1 , (u1(a1, a2)− u1(b1, a2))1a2 + (u1(a1, b2)− u1(b1, b2))(1− 1a2)) = (u1(a1, a2)−
u1(b1, a2) − u1(a1, b2) + u1(b1, b2))covp(1a1 ,1a2) ≥ 0. Thus if covp(1a1 ,1a2) > 0, we have

u1(a1, a2)−u1(b1, a2)−u1(a1, b2)+u1(b1, b2) ≥ 0. It cannot be that person 1 has a strongly

dominated strategy (because then covp(1a1 ,1a2) = 0) and thus u1(a1, a2) ≥ u1(b1, a2) and

u1(b1, b2) ≥ u1(a1, b2). We show u2(a1, a2) ≥ u2(a1, b2) and u2(b1, b2) ≥ u2(b1, a2) similarly.

If covp(1a1 ,1a2) < 0, the argument is similar. �
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