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ABSTRACT

In Condorcet’s model of information aggregation, a group of people decides among
two alternatives a and b, with each person getting an independent bit of evidence
about which alternative is objectively superior. I consider anonymous procedures,
in which the group’s decision depends only on the number of people who report
a or b, not their identities. A procedure is called incentive compatible for a per-
son if she wants to report truthfully given that others report truthfully. I show
that if an anonymous procedure is incentive compatible for both a person who is
significantly biased toward a and a person who is significantly biased toward b,
then it is incentive compatible for any person, regardless of his preferences and
prior beliefs; also, if it is not trivial, it must be nonmonotonic, with an additional
report for a sometimes decreasing the probability the group chooses a. I define the
“supermajority penalty” (SP) procedure and show that when there are significant
biases in both directions, the SP procedure is the optimal anonymous incentive
compatible procedure from the point of view of an unbiased person.

People often make important decisions collectively because they believe that by combin-
ing their judgment, they are more likely to make the correct decision. Examples include
juries who collectively decide whether to find a person guilty or innocent, journal editors
and referees who collectively decide whether to accept a manuscript, and consulting
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doctors who collectively decide how to treat a patient. In these situations, people’s prior
beliefs or inclinations might differ, but their interests do not fundamentally conflict; if
it were known for certain whether a person was guilty or innocent, or what the best
treatment for a patient would be, then all would agree.

A mathematical representation of this kind of collective decision-making was intro-
duced by Condorcet (1785). In his model, there are a group of n people who have to
decide among two alternatives a and b, and each gets an independent bit of evidence
about which alternative is objectively best. Each person’s evidence either favors a or b,
and each person’s evidence is assumed to be correct with probability q, which is the same
for everyone. Condorcet showed that the collective procedure which is most likely to
yield the best alternative is majority rule: each person reports his/her evidence, and the
alternative which gets the most reports is chosen. If we think of democratic elections as a
way of divining a group’s collective wisdom, then Condorcet’s result can be understood
as an argument for majority rule voting.

Starting from Condorcet’s original model, a recent line of research has considered
whether people want to report their evidence truthfully. This is a practical consideration;
for example, in Olympic diving competitions, if the US judge always scores US divers
highly regardless of their true performance, the Russian judge might respond by always
scoring non-US divers highly regardless of their true performance, thereby degrading
the quality of the collective decision for everyone. In Olympic diving, the highest and
lowest scores of a panel of judges are discarded and only the remaining scores are averaged
to obtain a diver’s final score, thereby limiting the ability of a single judge to influence
the final score. A procedure is called “incentive compatible” for a person if she wants
to report her information truthfully given the procedure and given that everyone else is
reporting truthfully.

If everyone is identical, strategic considerations do not arise (McLennan, 1998): no
individual wants to deviate from a socially optimal procedure because socially optimal is
synonymous with individually optimal. The model becomes nontrivial and more realistic
when people have different “biases.” People might have different prior beliefs over which
alternative is best. People might also have different preferences: for example, choosing
b when we should have chosen a might be not so bad for you but disastrous for me,
and thus I might require a higher “burden of proof ” for choosing b. Given people’s
biases, and given a voting procedure such as majority rule or unanimity rule, we can
model the situation as a game in which each person chooses what to report given her
evidence.

The usual approach in this line of research is to find Nash equilibria of this game, in
other words to predict voting behavior given a particular voting procedure. This paper
takes the mechanism design approach, considering a large set of possible procedures.
I consider anonymous procedures, in which the only thing which affects the group’s
choice of a or b is the total number of people who report a, not who these people are. I
also consider only the equilibrium in which everyone reports his/her evidence truthfully,
and hence everyone’s evidence affects the decision equally. Equality is a well-known
argument for anonymous procedures (Riker, 1982). Another argument is in terms of
simplicity: since each person’s evidence favors either a or b, a general procedure must
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consider 2n cases, while an anonymous procedure considers only n + 1 cases, since the
total number of people whose evidence favors a ranges from 0 to n.

This paper shows that the set of anonymous incentive compatible procedures has two
important properties when there are significant biases in both directions (at least one
person is significantly biased toward a and at least one person is significantly biased
toward b). First, if an anonymous procedure is incentive compatible when there are
significant biases in both directions, then it is incentive compatible for any person,
regardless of his preferences and prior beliefs. In other words, it is robust in the sense
that it is incentive compatible for all possible biases. Second, if an anonymous procedure
is incentive compatible when there are significant biases in both directions, then if it is
not trivial, it must be nonmonotonic: an additional vote for a can decrease the probability
of the group choosing a.

I define one such nonmonotonic procedure, the supermajority penalty (SP) procedure,
in which if a weak majority of people report a, then the procedure chooses a, but if too
many people, a supermajority, report a, then b is chosen with some probability, thereby
“penalizing” the supermajority. When there are significant biases in both directions, I
show that the SP procedure is the anonymous incentive compatible procedure which
maximizes the utility of an unbiased person, whose priors or preferences do not ex ante
favor either alternative. In this sense the SP procedure is optimal and robust: one can
approach Condorcet’s situation with no knowledge of the priors and preferences of the
people involved and be confident in the SP procedure. Finally, I show that as n grows
large, the welfare performance of the SP procedure approaches that of majority rule.

THE MODEL

Condorcet’s model has been presented in many papers (here we follow the notation
in Chwe, 1999). There is a group of people N = {1, 2, . . . , n}, where n is odd and at
least 3. The group chooses between alternatives a or b. Each person receives private
evidence on whether a or b is objectively superior. Each person i ∈ N has a prior belief
that a is superior with probability πi(a) and b is superior with probability πi(b), where
πi(a),πi(b) ∈ [0, 1], andπi(a)+πi(b) = 1. Each person’s private evidence is correct with
probability q ∈ (1/2, 1). Let g(d, e) be the probability that a person’s private evidence
supports e when the superior alternative truly is d; thus we have g(d, e) = q if d = e and
g(d, e) = 1 − q if d �= e.

Each person reports her private evidence to the procedure, which outputs the group’s
decision. The decision procedure is thus a function f : {a, b}n × {a, b} → [0, 1], where
f (r1, . . . , rn, a) is the probability of choosing a and f (r1, . . . , rn, b) is the probability
of choosing b given the reports r1, . . . , rn ∈ {a, b}, and of course f (r1, . . . , rn, a) +
f (r1, . . . , rn, b) = 1. After the decision is made, each person gets utility ui(d, c) when the
superior alternative truly is d and the alternative chosen is c. We assume that ui(a, a) >
ui(a, b) and ui(b, b) > ui(b, a); in other words, everyone prefers the superior alternative.

Each person’s strategy is a choice of what to report given his evidence, a function
si : {a, b} → {a, b}. The identity function id, where id(a) = a and id(b) = b, is the
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strategy in which a person always reports his evidence truthfully. Let saa be the strategy
of reporting a all the time (saa(a) = saa(b) = a) and let sbb be the strategy of reporting b
all the time (sbb(a) = sbb(b) = b).

Given the procedure f and strategies s1, . . . , sn, the probability that the
group chooses alternative c given that the superior alternative truly is d is
pdc( f , s1, . . . , sn) = ∑

(e1,...,en)∈{a,b}n g(d, e1) · · · g(d, en) f (s1(e1), . . . , sn(en), c). Here
e1, . . . , en is the evidence, s1(e1), . . . , sn(en) are the reports given this evidence, and
f (s1(e1), . . . , sn(en), c) is the probability of choosing c given the reports. Hence,
given strategies s1, . . . , sn, and the procedure f , person i’s expected utility is
EUi( f , s1, . . . , sn) = πi(a)paa( f , s1, . . . , sn)ui(a, a) + πi(a)pab( f , s1, . . . , sn)ui(a, b) +
πi(b)pba( f , s1, . . . , sn)ui(b, a) + πi(b)pbb( f , s1, . . . , sn)ui(b, b).

Because pab = 1 − paa and pba = 1 − pbb, we have EUi( f , s1, . . . , sn) =
πi(a)ui(a, b) + πi(b)ui(b, a) + πi(a)(ui(a, a) − ui(a, b))paa( f , s1, . . . , sn) + πi(b)(ui(b, b) −
ui(b, a))pbb( f , s1, . . . , sn). The first two terms here are constants and can be dropped. We
can then normalize and write

EUi( f , s1, . . . , sn) = φi(a)paa( f , s1, . . . , sn) + φi(b)pbb( f , s1, . . . , sn), (∗)

where φi(a),φi(b) are defined by

φi(a) = πi(a)(ui(a, a) − ui(a, b))
πi(a)(ui(a, a) − ui(a, b)) + πi(b)(ui(b, b) − ui(b, a))

φi(b) = πi(b)(ui(b, b) − ui(b, a))
πi(a)(ui(a, a) − ui(a, b)) + πi(b)(ui(b, b) − ui(b, a))

.

Note that φi(a),φi(b) ∈ [0, 1] and φi(a) + φi(b) = 1.
The parameters φi(a),φi(b) represent the “bias” of person i. If everyone has the same

prior belief πi(a) = πi(b) = 1/2, then φi(a),φi(b) correspond to the relative magnitudes
of ui(a, a) − ui(a, b) and ui(b, b) − ui(b, a). For example, if πi(a) = πi(b) = 1/2 and
ui(a, a) = 2, ui(a, b) = 0, ui(b, a) = 0, ui(b, b) = 1, then φi(a) = 2/3 and φi(b) = 1/3;
person i is biased toward a because her payoff from choosing a correctly is twice that of
choosing b correctly. If one has the “standard” utility function ui(a, a) = 1, ui(a, b) =
0, ui(b, a) = 0, ui(b, b) = 1, then φi(a) = πi(a) and φi(b) = πi(b); the bias φi is simply
the prior belief πi . If φi(a) > φi(b), either because of ui or πi , then we say that person
i is “biased toward” a. If a person has bias φi(a) = φi(b) = 1/2, we call that person
unbiased.

The sum of everyone’s utility is simply

∑
i∈N

EUi( f , s1, . . . , sn) =
[∑

i∈N

φi(a)

]
paa( f , s1, . . . , sn) +

[∑
i∈N

φi(b)

]
pbb( f , s1, . . . , sn).

Thus utility averaged over the group is equal to the utility of a person who has an average
bias. If average bias in a group is φi(a) = φi(b) = 1/2, then maximizing the sum of
everyone’s utility is the same as maximizing the utility of an unbiased person.
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We say that the procedure f is incentive compatible for person i if the following two
incentive compatibility (IC) constraints hold:

EUi( f , id, . . . , id) ≥ EUi( f , id, . . . , saa, . . . , id)

EUi( f , id, . . . , id) ≥ EUi( f , id, . . . , sbb, . . . , id).

In other words, reporting truthfully is at least as good as reporting a always or reporting
b always, given that everyone else reports truthfully. We do not have to consider the
“always lie” strategy sba, defined by sba(a) = b and sba(b) = a, because if one does not
gain by sometimes misreporting, then one does not gain by always misreporting. We say
the procedure f is incentive compatible if it is incentive compatible for all i ∈ N ; in
other words, (id, . . . , id) is a Nash equilibrium.

For r ∈ {a, b}n, define α(r) = #{i ∈ N : ri = a}; in other words, given the vector
of reports r, α(r) is the number of people who report a. We say that the procedure
f is anonymous if α(r) = α(r′) ⇒ f (r, a) = f (r′, a). In other words, an anonymous
procedure depends only on the number of people who report a or b, not their identities.
An anonymous procedure f can be represented by the numbers γ(0), γ(1), . . . γ(n),
where γ(α(r)) = f (r, a); in other words, γ( j) is the probability that a is chosen given
that there are j reports of a.

We say that a procedure f is symmetric if f (r, a) = f (r′, b) for all r, r′ such that
ri = a ⇔ r′

i = b. In other words, if r, r′ are exact “opposites” in that each person’s
report in r is the opposite of her report in r′, then the probability of choosing a given r
is the same as the probability of choosing b given r′. If a procedure f is both anonymous
and symmetric, and the probability of choosing a given j reports of a is γ( j), then we
have γ( j) = 1 −γ(n − j); the probability of choosing a given j reports of a is equal to the
probability of choosing b given j reports of b. We say that a procedure f is trivial if there
exists a constant κ ∈ [0, 1] such that f (r, a) = κ for all r ∈ {a, b}n. A trivial procedure
chooses a with the same probability regardless of the reports. We say that a procedure
f is monotonic if { j ∈ N : rj = a} ⊂ { j ∈ N : r′

j = a} ⇒ f (r, a) ≤ f (r′, a). In other
words, if the set of people who report a increases, then the probability of choosing a does
not decrease. An anonymous procedure is monotonic if γ(0) ≤ γ(1) ≤ · · · ≤ γ(n).

RESULTS

Our main results are best understood as resulting from Lemma 1: when a procedure
is anonymous and symmetric, a person’s bias can be “factored out” of her incentive
compatibility constraints (all proofs are in the Appendix).
Lemma 1 Say that f is anonymous and symmetric. Then person i’s two incentive compati-
bility constraints can be written as:

(φi(a) − q)W (q, γ) ≥ 0

(φi(b) − q)W (q, γ) ≥ 0,
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where γ(α(r)) = f (r, a) and W (q, γ) = ∑n−1
j=0 Cn−1

j qj(1 − q)n−1−j(γ( j) − γ( j + 1)), and
Cn

j is the binomial coefficient Cn
j = n!/((n − j)!j!).

In other words, when a procedure is anonymous and symmetric, the incentive compati-
bility constraints boil down to the sign of W (q, γ). When a person is relatively unbiased,
with φi(a) ≤ q and φi(b) ≤ q, then φi(a) − q and φi(b) − q and are both nonpositive
(at least one is negative), and thus we have W (q, γ) ≤ 0. When a person is significantly
biased, with φi(a) > q or φi(b) > q, then φi(a) − q and φi(b) − q have different signs and
we have W (q, γ) = 0.

Here is an intuitive explanation of Lemma 1, which is basically a restatement of the
proof. Remember that a person’s bias toward a can be understood as a prior belief φ(a)
that a is truly superior. Say a person has evidence b and is considering whether to report a.
She must consider two events. The first is the event the superior alternative is a; since
her evidence is b, the probability of this event is φ(a)(1 − q). In this event, it might be
good for her to lie and report a instead of b, because this might increase the probability
of choosing the truly superior a. How much this probability changes depends on the
procedure and what everyone else’s evidence is (and also what everyone else’s strategy
is, but we assume that everyone else tells the truth). Call this probability difference �a.
The second is the event that the superior alternative is b; since her evidence is b, the
probability of this state of the world is φ(b)q. In this event, by lying the person foregoes
the benefit of telling the truth. Telling the truth and reporting b might yield a higher
probability of choosing the truly superior b, relative to lying and reporting a. Call this
probability difference �b. For the procedure to be incentive compatible, the benefit
gained from lying must be less than the benefit foregone, the benefit from reporting the
truth. In other words, φ(a)(1 − q)�a ≤ φ(b)q�b.

Remember that �a is conditional on the event that a is truly superior and the person
receives evidence for a, and �b is conditional on the event that b is truly superior and
the person receives evidence for a. Remember that�a is the difference in probability of
choosing a if the person reports a as opposed to b and�b is the difference in probability
of choosing b if the person reports b as opposed to a. When the procedure is symmetric,
it is easy to see that�a = �b; these (conditional) probability differences are equal. Thus
we have (φ(a)(1 − q) − φ(b)q)�a ≤ 0, and hence (φ(a) − qφ(a) − q + qφ(a))�a ≤ 0,
which is the first inequality in Lemma 1, when we define W (q, γ) = −�a. Showing
(φi(b) − q)W (q, γ) ≥ 0, the second inequality in Lemma 1, is similar.

Now that we have Lemma 1, our results follow quickly. Our first proposition is
that if an anonymous procedure is incentive compatible for a person who is signifi-
cantly biased toward a and also for a person who is significantly biased toward b, then
the incentive compatibility constraints hold with equality for any person, regardless of
her bias.

Proposition 1 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. If f is
anonymous and incentive compatible for persons i and j, then person l’s incentive compatibility
constraints hold with equality for any φl .
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The proof of Proposition 1 is immediate when f is symmetric. When φi(b) > q, by
Lemma 1 we have W (q, γ) = 0, and thus f is incentive compatible for any bias φl . When
f is not symmetric, we use the additional fact that φj(a) > q.

Proposition 2 says that when there are significant biases in both directions, a nontrivial
anonymous incentive compatible procedure cannot be monotonic.

Proposition 2 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. Say f is
an anonymous incentive compatible procedure which is not trivial. Then f is not monotonic.

In other words, in any nontrivial anonymous incentive compatible procedure, there is
at least one scenario in which an additional report for a makes the probability that a
is chosen strictly decrease. Again, the proof is immediate when f is symmetric. From
Lemma 1, we have W (q, γ) = 0. But W (q, γ) is a weighted sum of γ( j)−γ( j +1) terms,
where all the weights are positive. So either γ( j) − γ( j + 1) = 0 for all j, in which case
f is trivial, or γ( j) − γ( j + 1) > 0 for some j, in which case f is not monotonic.

Now we know that when there are significant biases in both directions, any anonymous
incentive compatible procedure is nonmonotonic and robust in the sense that it is incen-
tive compatible for all biases. Among all anonymous incentive compatible procedures,
which might be the best? I define the SP procedure fSP and show that it maximizes the
expected utility of an unbiased person. Given q and n, Lemma 2 provides two numbers
k and z, which are parameters of fSP .

Lemma 2 Given q and n, there uniquely exists k ∈ {0, 1, . . . , (n − 3)/2} such that

z = Dky(n−1)/2 − k(yk−1 + yn−k)
(n − k)(yk + yn−1−k) − k(yk−1 + yn−k)

∈ (0, 1],

where y = q/(1 − q) and Dk = (k!(n − k)!)/(((n − 1)/2)!)2. Also, k is nonincreasing in
q and k < (1 − q)n. As n grows large, k/n → ρ, where ρ < 1 − q is uniquely defined by
ρ log ρ + (1 − ρ) log (1 − ρ) + log 2 = (1/2 − ρ) log y.

Definition. Given q and n, define the SP procedure fSP as

fSP(r, a) =



1 if α(r) < k
z if α(r) = k
0 if k < α(r) ≤ (n − 1)/2
1 if (n + 1)/2 ≤ α(r) < n − k
1 − z if α(r) = n − k
0 if α(r) > n − k

,

where k ∈ {0, 1, . . . , (n−3)/2} and z ∈ (0, 1] are defined as in Lemma 2, and fSP(r, b) =
1 − fSP(r, a).

In other words, if a weak majority of the reports are for a, then a is chosen with
probability 1. However, if the number of reports for a is greater than n − k, then this
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Figure 1. fSP when n = 7 and q = 2/3 (thus k = 1 and z = 95/139).

supermajority is “penalized” and a is chosen with probability 0. If the number of reports
for a is equal to n − k, then a is chosen with probability 1 − z. For example, when n = 7
and q = 2/3, Lemma 2 gives us k = 1 and z = 95/139, and the SP procedure fSP is
shown in Figure 1.

Proposition 3 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. Then
fSP is the anonymous incentive compatible procedure which uniquely maximizes EU0, where
φ0(a) = φ0(b) = 1/2.

If φi(a) ∈ [1 − q, q] for all i ∈ N , then the optimal anonymous incentive compatible
procedure, from the point of view of an unbiased person, is majority rule. But if a person’s
bias is outside [1 − q, q], then majority rule is no longer incentive compatible. If some
people have φi(a) slightly greater than q and everyone else has φj(a) ∈ [1 − q, q], then
the optimal anonymous incentive compatible procedure allows a to be chosen with some
probability when it gets one report short of a majority (Chwe, 1999). If there is at least
one person with φi(a) < 1−q and at least one with φj(a) > q, then Proposition 3 applies
and the unique optimal anonymous incentive compatible procedure is the SP procedure.

How often is the supermajority penalized? In expectation we either have qn reports for
a (if a is the objectively superior alternative) or (1−q)n reports for a (if b is the objectively
superior alternative). Lemma 2 says that k < (1 − q)n, and hence the expected number
of reports is not in the supermajority penalty region. Lemma 2 also says that as n grows
large, k/n → ρ, where ρ < 1 − q is a constant which does not depend on n. Thus as n
grows large, the law of large numbers applies and the supermajority penalty regions are
almost never reached. We thus state Proposition 4 without proof.

Proposition 4 As n grows large, EUi( fSP , id, . . . , id) approaches EUi( fMR, id, . . . , id),
where fMR is majority rule, defined as fMR(r, a) = 1 if α(r) ≥ (n + 1)/2 and fMR(r, a) = 0
otherwise.

Figure 2 shows how the SP procedure changes when q = 2/3 and n goes from 5 to
101. When n = 101 for example, given that q = 2/3, the number of reports for a cluster
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Figure 2. fSP when q = 2/3 and n = 5, 9, 25, 101.
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Figure 3. fSP when n = 9 and q = 0.501, 0.6, 0.7, 0.8.

around 34 (if b is superior) or 67 (if a is superior) and the supermajority penalty rarely
occurs.

As n grows large, the SP procedure’s welfare performance approaches that of majority
rule, the “first best” procedure if there are no incentive compatibility constraints. It does
so while eliciting truthful reports from everyone, regardless of their bias. When n is large,
the supermajority penalty regions are enough to discourage lying even though they are
rarely reached. The reason for this is as n grows large, the temptation to lie also becomes
small, since lying “helps” only when everyone else’s reports are equally divided, an event
which also becomes rare.

How does the SP procedure depend on the quality of evidence q? Lemma 2 says that
k is nonincreasing in q: as q increases, k stays the same or decreases. Figure 3 shows this
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for n = 9 and q going from 0.501 to 0.8. As q increases, each person’s evidence gets
stronger and people’s biases become relatively less important; thus the “distortion” in the
procedure necessary to deal with the biases lessens, and the supermajority penalty regions
shrink. As q approaches 1, we know k = 0 because Lemma 2 says that k < (1 − q)n,
and it is also easy to see from the definition of z in Lemma 2 that as q approaches 1,
z approaches 0. Hence as q approaches 1, the SP procedure approaches majority rule.

EXAMPLE

An example is helpful in explaining the results and how they are proved. Say that n = 3
and thus an anonymous procedure γ can be written as four numbers γ(0), γ(1), γ(2), γ(3),
where γ( j) ∈ [0, 1] is the probability that the group chooses a given j reports for a.

Remember that a person’s expected utility is given by the formula (∗) earlier. The first
incentive compatibility constraint is that whenever a person receives evidence for b, she
should report b and not a. Given that she receives evidence for b, her expected utility
from reporting b is

φ(a)(1 − q)[q2γ(2) + 2q(1 − q)γ(1) + (1 − q)2γ(0)]
+φ(b)q[(1 − q)2(1 − γ(2)) + 2(1 − q)q(1 − γ(1)) + q2(1 − γ(0))].

The first line is her bias φ(a) times the probability that a is chosen when a is truly the
superior alternative. When a is truly the superior alternative, the probability that she
gets evidence b is 1 − q, and we have three cases. In the first case, two other people
get evidence a, which happens with probability q2, and the procedure chooses a with
probability γ(2), and so forth. The second line is her bias φ(b) times the probability
that b is chosen when b truly is the superior alternative. When b is truly the superior
alternative, the probability that she gets evidence b is q, and we similarly have three cases.

If when she receives evidence for b she reports a instead, her expected utility becomes

φ(a)(1 − q)[q2γ(3) + 2q(1 − q)γ(2) + (1 − q)2γ(1)]
+φ(b)q[(1 − q)2(1 − γ(3)) + 2(1 − q)q(1 − γ(2)) + q2(1 − γ(1))],

which is the same as before except that all the arguments of γ increase by 1. By reporting
a instead of b, she increases the number of a reports by 1.

So the incentive compatibility constraint is simply that the first expression minus the
second expression is greater than or equal to zero:

φ(a)(1 − q)[q2(γ(2) − γ(3)) + 2q(1 − q)(γ(1) − γ(2)) + (1 − q)2(γ(0) − γ(1))]
+φ(b)q[(1 − q)2(γ(3) − γ(2)) + 2(1 − q)q(γ(2) − γ(1)) + q2(γ(1) − γ(0))] ≥ 0

or in other words

φ(a)(1 − q)[q2(γ(2) − γ(3)) + 2q(1 − q)(γ(1) − γ(2)) + (1 − q)2(γ(0) − γ(1))]
−φ(b)q[(1 − q)2(γ(2) − γ(3)) + 2(1 − q)q(γ(1) − γ(2)) + q2(γ(0) − γ(1))] ≥ 0.
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Assume for a moment that f is symmetric (this is justified later). Then we have
γ(3) = 1 − γ(0) and γ(2) = 1 − γ(1) and thus γ(2) − γ(3) = γ(0) − γ(1). Thus we can
write this inequality as:

(φ(a)(1 − q) − φ(b)q)W (q, γ) ≥ 0,

where W (q, γ) = (1− q)2(γ(0)−γ(1))+2(1− q)q(γ(1)−γ(2))+ q2(γ(2)−γ(3)). Since
φ(b) = 1−φ(a), we haveφ(a)(1−q)−φ(b)q = φ(a)−q, and we get (φ(a)−q)W (q, γ) ≥ 0.
Similarly, the second incentive compatibility constraint, that whenever a person receives
evidence for a she should report a and not b, turns out to be (φ(b) − q)W (q, γ) ≥ 0.

This is the proof of Lemma 1 when n = 3. As mentioned before, when a person is not
very biased andφ(a),φ(b) ∈ [1−q, q], the two constraints boil down to W (q, γ) ≤ 0. Note
that this is satisfied by majority rule, in which γ(0) = γ(1) = 0 and γ(2) = γ(3) = 1.

As mentioned before, when φ(a) > q or φ(b) > q, then φ(a) − q and φ(b) − q have
different signs, and thus W (q, γ) = 0. Thus the procedure is incentive compatible, and
the incentive compatibility constraints hold with equality, for any φ (Proposition 1).
Since W (q, γ) = 0, from the definition of W (q, γ), either all three terms γ(0) − γ(1),
γ(1)−γ(2), and γ(2)−γ(3) are zero, in which case the procedure is trivial, or at least one
of the terms is negative, in which case the procedure is nonmonotonic (Proposition 2).

To illustrate the proof of Proposition 3, we write down the expected utility of an
unbiased person, a person with bias φ(a) = φ(b) = 1/2:

1
2
[q3γ(3) + 3q2(1 − q)γ(2) + 3q(1 − q)2γ(1) + (1 − q)3γ(0)]

+ 1
2
[q3(1 − γ(0)) + 3q2(1 − q)(1 − γ(1)) + 3q(1 − q)2(1 − γ(2))

+ (1 − q)3(1 − γ(3))].
To find the γ which maximizes this, all terms which are constant in γ can be ignored
and we thus have the objective

1
2
[(q3 − (1 − q)3)γ(3) + (3q2(1 − q) − 3q(1 − q)2)γ(2)

+ (3q(1 − q)2 − 3q2(1 − q))γ(1) + ((1 − q)3 − q3)γ(0)].
Assuming that the procedure is symmetric, γ(3) = 1 − γ(0) and γ(2) = 1 − γ(1), and
again dropping terms constant in γ , our objective becomes

((1 − q)3 − q3)γ(0) + (3q(1 − q)2 − 3q2(1 − q))γ(1).

When one person hasφ(a) > q and another hasφ(b) > q, then the incentive compatibility
constraint is W (q, γ) = 0, and given that the procedure is symmetric, this simplifies to

((1 − q)2 + q2)γ(0) + (4q(1 − q) − q2 − (1 − q)2)γ(1) = 2(1 − q)q.
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Say for example that q = 2/3. Then to find the symmetric anonymous procedure
which maximizes the expected utility of an unbiased person, subject to the constraint
that the procedure must be incentive compatible, we solve the following constrained
maximization problem:

Maximize
γ(0), γ(1) ∈ [0, 1] − 7

27
γ(0) − 2

9
γ(1) such that

5
9
γ(0) + 1

3
γ(1) = 4

9
.

To maximize the objective, we would like to set γ(0) = γ(1) = 0 (majority rule),
but this would not satisfy the constraint. At least one of the variables γ(0), γ(1) must
be made positive. Which one? It depends on how much a variable hurts the objective
relative to how much it helps satisfy the constraint. If we look at the ratios of the
coefficients on γ(0) and γ(1), we find that the ratio for γ(0) is ( − 7

27 )/( 5
9 ) = − 7

15 and
the ratio for γ(1) is ( − 2

9 )/( 1
3 ) = − 2

3 . Since the ratio for γ(0) is less negative, making
γ(0) positive is the better “deal,” and the maximum is obtained at γ(0) = 4/5 and
γ(1) = 0. For general q, we show that ((1 − q)3 − q3)/((1 − q)2 + q2) is greater than
(3q(1 − q)2 − 3q2(1 − q))/(4q(1 − q) − q2 − (1 − q)2).

The only thing remaining is to justify the assumption that γ is symmetric. The
argument, roughly speaking, proceeds like this. Say for example that we have q = 2/3
and we have biases φ1(a) = 1/4, φ2(a) = 4/7, φ3(a) = 10/11; person 1 is biased toward
b, person 2 is relatively unbiased, and person 3 is biased toward a. Note that the IC
constraints are linear in φ(a). Hence if γ satisfies the IC constraints for φ(a) = 1/4 and
for φ(a) = 10/11, then they satisfy the IC constraints for all convex combinations of 1/4
and 10/11, and in particular, φ(a) = 3/4 ∈ [1/4, 10/11]. Thus any incentive compatible
γ satisfies the IC constraints for φ(a) = 1/4 and φ(a) = 3/4.

Define a new procedure γ ′′ as γ ′′( j) = 1 − γ(3 − j). In other words, the probability
that γ ′′ chooses a given 2 reports of a is the same as the probability that γ chooses b
given 2 reports of b. It is not difficult to show, by simply exchanging the names of a and
b, that if γ satisfies the IC constraints for φ(a) = r, then γ ′′ satisfies the IC constraints
for φ(a) = 1 − r. Since γ satisfies the IC constraints for φ(a) = 1/4 and φ(a) = 3/4, we
know that γ ′′ satisfies the IC constraints for φ(a) = 3/4 and φ(a) = 1/4. So both γ and
γ ′′ satisfy the IC constraints for φ(a) = 1/4 and φ(a) = 3/4. Since the IC constraints
are linear in γ , if we define another procedure γ ′ as γ ′( j) = (γ( j) + γ ′′( j))/2, we know
that γ ′ satisfies the IC constraints for φ(a) = 1/4 and φ(a) = 3/4.

Note that the procedureγ ′ is symmetric. We can think ofγ ′ as a “symmetrized” version
of γ . Since γ ′ is symmetric and satisfies the IC constraints for φ(a) = 3/4 > 2/3 = q,
by Lemma 1, γ ′ satisfies the IC constraints for all φ(a) and hence is incentive compatible.
So any incentive compatible γ has a symmetric version γ ′ which is incentive compatible.

Remember that our objective function is the expected utility of an unbiased person,
with φ(a) = 1/2. It is easy to show that an unbiased person gets the same expected
utility from γ and γ ′′, and thus by convexity gets the same expected utility from γ ′. We
can thus safely restrict ourselves to symmetric γ , because for any incentive compatible γ
which is not symmetric, there is a symmetric version γ ′ which yields the same expected
utility.
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To summarize, what makes things simple is that for anonymous and symmetric pro-
cedures, the terms φ(a) − q and φ(b) − q factor out of the IC constraints (Lemma 1), and
thus incentive compatibility boils down to the sign of W (q, γ). To understand intuitively
why the SP procedure has the shape that it does in general, one simply looks at the
ratio of the coefficient of γ( j) in the objective function EU0 to the coefficient of γ( j) in
the constraint W (q, γ) = 0. This ratio always decreases (becomes more negative) in j.
Making γ(0) positive is always the best “deal,” and when this is maxed out at γ(0) = 1,
we resort to the next best deal, γ(1), until this is maxed out, and so forth.

DISCUSSION

This paper looks only at anonymous procedures and only the equilibrium in which
everyone tells the truth. Also, the welfare criterion in Proposition 3 is the utility of an
exactly unbiased person. I discuss these two assumptions in turn.

We assume that everyone’s evidence matters equally in the decision and thus we
consider anonymous procedures. But even if the procedure is anonymous, if a person for
example always reports a regardless of her evidence, then her evidence does not affect
the decision and is effectively discarded. Thus to make sure that everyone’s evidence
matters equally, we also assume the equilibrium in which everyone reports truthfully. But
other Nash equilibria are possible. Say n = 2/3 and q = 2/3. As shown in our example
earlier, the SP procedure is given by γ(0) = 4/5, γ(1) = 0, γ(2) = 1, γ(3) = 1/5. Say
φ1(a) = 3/4, φ2(a) = 1/4, and φ3(a) = 1/2. In other words, person 1 is biased toward a,
person 2 is biased toward b, and person 3 is unbiased. By Proposition 3 we know that
(id, id, id) is a Nash equilibrium, which gives everyone expected utility 8/15 ≈ 0.533.
However, it turns out that (saa, sbb, id) is also a Nash equilibrium, which gives everyone
expected utility 2/3 ≈ 0.667. Here person 1 always reports a and person 2 always
reports b, and thus their evidence does not affect the decision; this is equivalent to a
procedure in which only person 3’s vote is counted. In this case, it seems odd to assume
that everyone tells the truth when everyone would prefer another equilibrium.

There are two ways to approach this issue. The first is to evaluate a procedure by
finding all equilibria given the procedure. But even for the simplest procedures such
as majority rule, there are many equilibria. For example, if n = 3 and everyone is
unbiased, given majority rule, the set of Nash equilibria includes (id, id, id), (saa, sbb, id),
(saa, saa, saa), and (sbb, sbb, sbb); to make the seemingly obvious argument that majority
rule is optimal when everyone is unbiased, we also have to assume outright the truthful
equilibrium.

Short of finding all equilibria for a given procedure, we can look at cases in which
one equilibrium seems particularly justifiable. For example, say that m people are “a-
partisans” who have biasφ(a) = 1 and m people are “b-partisans” who have biasφ(a) = 0,
and everyone else is an “independent,” withφ(a) = 1/2 (as in for example Feddersen and
Pesendorfer, 1996). An a-partisan wants the group to choose a, and a b-partisan wants the
group to choose b, regardless of the evidence. Under majority rule, a weakly dominant
strategy for an a-partisan is to report a all the time, and a weakly dominant strategy for
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Figure 4. Which procedure, fSP or fMR, gives a higher EU0 when partisans have bias
φ(a) = 1 or φ(a) = 0 and everyone else has φ(a) = 1/2, where q = 2/3.

a b-partisan is to report b all the time. If the independents all report truthfully, then this
is an equilibrium, in which the partisans cancel each other out and the independents
effectively make the decision. We compare majority rule assuming this equilibrium
with the SP procedure assuming the equilibrium in which everyone always reports
truthfully. Figure 4 shows which one is better at maximizing the expected utility of an
unbiased person, depending on the number of partisans, where n ranges from 3 to 101
and q = 2/3.

For n = 3, 5, 7, majority rule is always superior, even if almost everyone is a partisan
(there is always at least one independent). For example, when n = 7, even if three
people are a-partisans and three are b-partisans, leaving the group to depend only on
the information of the single independent, majority rule is better than using the SP
procedure. However, when n = 9 and there are eight partisans (four on each side), then
the SP procedure is better than relying on the single independent. The SP procedure
may be distorted, but its strength is that it elicits information from everyone, even
people who are completely biased. As n increases, this strength increases. When there
are no partisans at all, of course majority rule is superior, because everyone wants to
report truthfully. When there are a small number of partisans, their information can be
discarded with little loss of welfare. But for example when n = 101, even if there are as
few as 12 partisans (6 on each side) then the SP procedure is better than majority rule.

The second way to approach this issue is to drop the assumption that everyone’s
evidence matters equally, and consider all possible procedures, not just anonymous ones.
The mechanism design approach can then find the best possible equilibrium of the best
possible procedure (see for example Myerson, 1991). In our earlier example in which
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n = 3 and φ1(a) = 3/4, φ2(a) = 1/4, and φ3(a) = 1/2, the best possible procedure for
the unbiased person 3 is the same as majority rule except that f ((a, b, b), a) = 4/7 and
f ((a, b, a), b) = 4/7. In other words, person 1, who is biased toward a, gets to “enforce”
her favorite with probability 4/7 even when everyone else votes for b, and similarly person
2, who is biased toward b, gets to “enforce” her favorite with probability 4/7 even when
everyone else votes for a. Biased individuals are given “special powers” (as in Chwe,
1999). The expected utility of the unbiased person 3 given this optimal nonanonymous
procedure, which is the highest expected utility that an unbiased person can attain in
any equilibrium of any procedure, is 44/63 ≈ 0.698.

Finding optimal nonanonymous procedures is not mathematically difficult, but spec-
ifying them can require a great deal of detail, since they are defined on 2n cases, and
they also typically depend precisely on people’s biases (see for example Chwe, 1999).
With the simplifying assumption that everyone’s evidence matters equally, at least we can
write down a procedure which is simple, does not depend precisely on people’s biases,
is incentive compatible for all biases, and is optimal given our assumption.

This paper does not find the best possible equilibrium of the best possible anonymous
procedure, because in the best possible equilibrium of an anonymous procedure, some
people might report truthfully and some might not, and our assumption in this paper
is that everyone’s evidence matters equally. Perhaps it is not reasonable to ask that a
procedure elicit truthful reports from everyone, including people who are strongly biased
in opposite directions. From this point of view, what is interesting about the SP procedure
is not so much its optimality but the fact that it even exists. It might seem difficult to
get truthful revelation from both a person very biased toward a and a person very biased
toward b without being able to tell the two apart, but it is possible.

The optimality result of Proposition 3 is from the point of view of a perfectly unbiased
person, which happens to be the objective function assumed by Condorcet in his original
model. Still, it is natural to ask whether the optimality of the SP procedure depends in a
fragile way on this particular objective function. Numerical computations show that this
is an issue only for q near 0.5. Figure 5 shows the region in which the SP procedure is
optimal, in terms of q and φ0(a), where n = 9. Figure 5 also shows the regions in which
the trivial procedures fA and fB are optimal, where fA is the procedure which chooses a
with probability 1 regardless of the reports and fB is the procedure which chooses b with
probability 1 regardless of the reports. For q close to 0.5, the optimality of fSP is not very
robust. This is partly because when the quality of evidence is very low, someone with
even the slightest bias toward a finds fA optimal and someone with even the slightest
bias toward b finds fB optimal. For q greater than around 0.6, fSP is optimal for people
whose biases are in a significant interval around 0.5. For q greater than around 0.9, fSP
is optimal for almost all biases.

It is also natural to consider other welfare criteria such as total social welfare. Recall
that average social welfare is equal to the utility of an individual whose bias is the
average of biases in the group. Thus if biases have average φ(a) = φ(b) = 1/2, then
maximizing total social welfare is equivalent to maximizing the utility of an unbiased
person. Similarly, maximizing the weighted sum of utilities is equivalent to maximizing
the utility of an individual whose bias is the weighted average of biases. Thus in Figure 5,
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Figure 5. Anonymous incentive compatible procedures which maximize EU0 given
φ0(a) ∈ [0, 1] and q = 0.51, 0.52, . . . , 0.99, where n = 9.

for q greater than around 0.9, fSP is optimal for almost any weighted sum of individual
utilities; in other words, most of the Pareto frontier is fSP .

CONCLUSION

This paper starts with Condorcet’s original model, adds strategic voting and hetero-
geneous prior beliefs and preferences, and finds an optimal and surprisingly robust
nonmonotonic voting procedure. This robustness and nonmonotonicity is not due to
any particular procedure, but is an “artifact” of Condorcet’s model itself. Other exten-
sions of Condorcet’s model include giving each person a continuous, not binary, sig-
nal about which alternative is superior (for example Duggan and Martinelli, 2001; Li
et al., 2001) and giving some people more informative signals than others (for exam-
ple Ben-Yashar and Milchtaich, 2007). The assumption of binary signals in our paper
greatly simplifies the consideration of anonymous procedures. When signals are binary,
an anonymous procedure is simply a function of the total number of reports for a. With
continuous signals, an anonymous procedure is a function of everyone’s continuous
signals which is symmetric in its arguments, a much more complicated mathematical
object. If we allow continuous signals, we might get similar results: for example, in
a two-person model with continuous signals, one can show that a monotonic proce-
dure cannot be incentive compatible (Li et al., 2001). If people have different quality
evidence, which we would represent in our model by letting each person have a dif-
ferent value of q, then of course the results here would not hold; the SP procedure
does depend on the specific value of q (in fact q and n are the only parameters the
SP procedure does depend on). Finding optimal incentive compatible procedures when
signals are continuous or when people have different quality evidence is a question for
future work. Another line of research explicitly models uncertainty in people’s biases; it
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is possible that uncertainty about biases can help in getting people to truthfully reveal
their evidence (Austen-Smith and Feddersen, 2006). Since the SP procedure is incentive
compatible for all biases, it provides a minimum level of performance when biases are
uncertain.

Despite its power, surprisingly few papers have used the mechanism design approach
to analyze Condorcet’s model (examples are Chwe, 1999; Li et al., 2001; Wolinsky, 2002).
The mechanism design approach has several substantive advantages over starting with
a single particular procedure like majority rule or unanimity rule. For example, since
in real life people discuss and argue before voting, “pre-play communication” should
be considered. But allowing this changes the strategic situation dramatically (Coughlan,
2000). In fact, if pre-play communication is unrestricted, then it really doesn’t matter
what the voting rule is: all voting rules except for unanimity rules generate the same set of
equilibrium outcomes (Gerardi and Yariv, 2007). Thus pre-play communication should
be considered an integral part of the procedure itself. Since there are many possible kinds
of pre-play communications, including bilateral conversations, group announcements,
and straw polls, it might seem almost impossible to find which procedure is socially
optimal. But the mechanism design approach does exactly this. The mechanism design
approach asks the more profound question of what is the best possible procedure, not
what behavior is given a particular procedure. But it is mathematically simpler, just a
linear programming problem.

Most of the existing work on Condorcet’s model is “conservative” in that it considers
already well-known procedures such as majority rule and unanimity rule. But the entire
point of Condorcet’s original argument is to derive the optimal procedure, not assume
it. When we add strategic voting, mechanism design allows us to keep the spirit of
Condorcet’s original question. This paper shows that if we assume strategic voting and
anonymity in the sense of everyone’s evidence affecting the decision equally, Condorcet’s
model cannot be understood as supporting well-known procedures such as majority rule
as long as there is at least one person biased in each direction. The SP procedure is
the optimal anonymous procedure for a very large set of biases (when there is at least
one person biased in each direction) and is incentive compatible for all biases. The
SP procedure is not monotonic, but no incentive compatible anonymous procedure is
monotonic when there is at least one person biased in each direction.

Would anyone actually use a nonmonotonic procedure in practice? Nonmonotonic
procedures are not that unusual. In a similar model in which experts who all have similar
biases report to a decision maker with a different bias, the optimal procedure for the
decision maker is nonmonotonic (Wolinsky, 2002). When deciding among more than
two alternatives, some popular procedures are nonmonotonic, such as plurality voting
with a runoff among the top two candidates (Riker, 1982; but see also Austen-Smith and
Banks, 1991). If one is wedded to monotonicity, the results here might be understood
as showing the limitations of procedures which treat everyone’s evidence equally: given
biases in both directions, one cannot retain monotonicity without treating some people’s
evidence differently from others. Perhaps our results illustrate the limitations of Con-
dorcet’s model itself; although it is often used as a foundation for modeling voting and
decision-making, it can yield surprisingly nonintuitive results.
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APPENDIX

Lemma 1 Say that f is anonymous and symmetric. Then person i’s two incentive compati-
bility constraints can be written as:

(φi(a) − q)W (q, γ) ≥ 0

(φi(b) − q)W (q, γ) ≥ 0,

where γ(α(r)) = f (r, a) and W (q, γ) = ∑n−1
j=0 Cn−1

j qj(1 − q)n−1−j(γ( j) − γ( j + 1)), and
Cn

j is the binomial coefficient Cn
j = n!/((n − j)!j!).

Proof: Since we consider anonymous procedures f , we write f (r, a) = γ(α(r)), where
γ( j) is the probability that the procedure chooses a given that there are j reports of a.

Let A(φ, γ) = EUi( f , id, id−i) − EUi( f , saa, id−i) be person i’s utility differ-
ence between playing id and saa given that everyone else plays id. Similarly, let
B(φ, γ) = EUi( f , id, id−i) − EUi( f , sbb, id−i). Person i’s incentive compatibility con-
straints are A(φ, γ) ≥ 0 and B(φ, γ) ≥ 0. By our formula (∗), we have A(φ, γ) =
φ(a)[paa( f , id, id−i) − paa( f , saa, id−i)] + φ(b)[pbb( f , id, id−i) − pbb( f , saa, id−i)].

Show that paa( f , id, id−i)−paa( f , saa, id−i) = (1−q)
∑n−1

j=0 Cn−1
j qj(1−q)n−1−j(γ( j)−

γ( j +1)) = (1−q)W (q, γ). To see this fact, note that paa( f , id, id−i) and paa( f , saa, id−i)
are different only when ei = b (when ei = a, in both id and saa, person i makes the
same report). Since the superior alternative is a, the probability that ei = b is 1 − q. The
probability that j other people have evidence a is Cn−1

j qj(1 − q)n−1−j . If person i plays
id, then the group chooses a with probability γ( j); if person i plays saa, then the group
chooses a with probability γ( j + 1); thus the fact is demonstrated. Similarly, we find
that pbb( f , id, id−i) − pbb( f , saa, id−i) = q

∑n−1
j=0 Cn−1

j (1 − q)jqn−1−j(1 − γ( j) − (1 −
γ( j +1))) = q

∑n−1
j=0 Cn−1

j (1− q)jqn−1−j(γ( j +1)−γ( j)). If we change variables and let

i = n−1−j, this is equal to q
∑n−1

i=0 Cn−1
n−1−i(1−q)n−1−iqi(γ(n−i)−γ(n−1−i)). Since f

is symmetric, we have γ(n− i)−γ(n−1− i) = 1−γ(i)− (1−γ(i+1)) = γ(i+1)−γ(i).
We also have Cn−1

n−1−i = Cn−1
i . Hence pbb( f , id, id−i) − pbb( f , saa, id−i) = −qW (q, γ).

Thus A(φ, γ) = φ(a)(1 − q)W (q, γ) − φ(b)qW (q, γ) = (φ(a) − qφ(a) − (1 −
φ(a))q)W (q, γ) = (φ(a) − q)W (q, γ). We similarly show B(φ, γ) = (φ(b) − q)
W (q, γ). �

Proposition 1 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. If f is
anonymous and incentive compatible for persons i and j, then person l’s incentive compatibility
constraints hold with equality for any φl .

Proof: Let r = min{φi(b),φj(a)}. We know r > q. Define biases φr and φ1−r as
φr(a) = r, φr(b) = 1 − r and φ1−r(a) = 1 − r, φ1−r(b) = r. It is easy to see that
φr(a),φ1−r(a) ∈ [φi(a),φj(a)]. Since f satisfies A(φi , γ) ≥ 0, B(φi , γ) ≥ 0, A(φj , γ) ≥
0, B(φj , γ) ≥ 0, since A(φ, γ) and B(φ, γ) are linear in φ(a), and φr(a),φ1−r(a) ∈
[φi(a),φj(a)], we know f satisfies A(φr , γ) ≥ 0, B(φr , γ) ≥ 0 and A(φ1−r , γ) ≥ 0,
B(φ1−r , γ) ≥ 0.
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Define γ ′′( j) = 1 − γ(n − j). It is easy to verify (by simply exchanging the names
of a and b) that A(φr , γ ′′) = B(φ1−r , γ) ≥ 0 and A(φ1−r , γ ′′) = B(φr , γ) ≥ 0.
Define γ ′( j) = (γ( j) + γ ′′( j))/2. Now A(φr , γ ′) = (A(φr , γ) + A(φr , γ ′′))/2 ≥ 0 and
A(φ1−r , γ ′) = (A(φ1−r , γ) + A(φ1−r , γ ′′))/2 ≥ 0. It is easy to see that γ ′( j) is symmetric
and thus as shown in the proof of Lemma 1, we have A(φr , γ ′) = (r − q)W (q, γ ′) and
A(φ1−r , γ ′) = (1−r−q)W (q, γ ′). Hence (r−q)W (q, γ ′) ≥ 0 and (1−r−q)W (q, γ ′) ≥ 0.
Since r − q > 0 and 1 − r − q < 0, we have W (q, γ ′) = 0. Hence A(φr , γ ′) = 0. But
since A(φr , γ) ≥ 0 and A(φr , γ ′′) ≥ 0, and A(φr , γ ′) = (A(φr , γ) + A(φr , γ ′′))/2, we
have A(φr , γ) = A(φr , γ ′′) = 0. Since B(φ1−r , γ) = A(φr , γ ′′), we have B(φ1−r , γ) = 0.
Similarly, we conclude that A(φ1−r , γ) = 0 and B(φr , γ) = 0.

Now for any φl , we have φl (a) = λφr(a) + (1 − λ)φ1−r(a), where λ ∈ � (that is,
φl (a) is a linear, not necessarily convex, combination of φr(a) and φ1−r(a)), and thus
A(φl , γ) = λA(φr , γ) + (1 − λ)A(φ1−r , γ) = 0 and similarly B(φl , γ) = 0. �

Proposition 2 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. Say f is
an anonymous incentive compatible procedure which is not trivial. Then f is not monotonic.

Proof: Say f is anonymous, incentive compatible, and not trivial. Let γ(α(r)) = f (r, a).
Say f is monotonic, in other words γ( j) ≤ γ( j + 1) for all j. As in the proof of Proposi-
tion 1, define γ ′′( j) = 1 − γ(n − j) and define γ ′( j) = (γ( j) + γ ′′( j))/2. Note that γ ′ is
symmetric. It is easy to see that γ ′ is monotonic: since γ(n − j) ≥ γ(n − j − 1), we have
1 − γ(n − j) ≤ 1 − γ(n − j − 1) and thus γ ′′( j) ≤ γ ′′( j + 1), and since γ( j) ≤ γ( j + 1),
we have γ ′( j) ≤ γ ′( j + 1). Since f is not trivial, there exists k such that γ(k) < γ(k + 1).
Since f is monotonic, we have γ(n − k − 1) ≤ γ(n − k) and thus γ ′′(k) ≤ γ ′′(k + 1).
Therefore, γ ′(k) < γ ′(k + 1).

The proof of Proposition 1 shows that W (q, γ ′) = 0. But W (q, γ ′) is the weighted
sum of γ ′( j) − γ ′( j + 1) terms, where all of the weights are greater than zero. Since
γ ′( j) − γ ′( j + 1) ≤ 0 for all j, it must be that γ ′( j) − γ ′( j + 1) = 0 for all j, which
contradicts γ ′(k) < γ ′(k + 1). �

Lemma 2 Given q and n, there uniquely exists k ∈ {0, 1, . . . , (n − 3)/2} such that

z = Dky(n−1)/2 − k( yk−1 + yn−k)
(n − k)( yk + yn−1−k) − k( yk−1 + yn−k)

∈ (0, 1],

where y = q/(1 − q) and Dk = (k!(n − k)!)/(((n − 1)/2)!)2. Also, k is nonincreasing in
q and k < (1 − q)n. As n grows large, k/n → ρ, where ρ < 1 − q is uniquely defined by
ρ log ρ + (1 − ρ) log (1 − ρ) + log 2 = (1/2 − ρ) log y.

Proof: We write z as a function of k and y and multiply numerator and denominator by
y−(n−1)/2 to get zk( y) = numk( y)/denk( y), where numk( y) and denk( y) are defined as:

numk( y) = Dk − k( yk−n/2−1/2 + yn/2−k+1/2)

denk( y) = (n − k)( yk−n/2+1/2 + yn/2−k−1/2) − k( yk−n/2−1/2 + yn/2−k+1/2).
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Note that numk( y) is strictly decreasing in y for y > 1 and k ∈ {1, . . . , (n − 3)/2},
because (d/dy)(numk( y)) = −(k/y)(n/2 − k + 1/2)( − yk−n/2−1/2 + yn/2−k+1/2) < 0.

We prove five useful facts. Fact A is numk+1( y) ≤ 0 ⇔ numk( y) ≤ denk( y). This is
because numk+1( y) ≤ 0 is equivalent to Dk+1/(k + 1) ≤ yk−n/2+1/2 + yn/2−k−1/2 and
numk( y) ≤ denk( y) is equivalent to Dk/(n − k) ≤ yk−n/2+1/2 + yn/2−k−1/2, and it is easy
to verify from the definition of Dk that Dk+1/(k + 1) = Dk/(n − k). Similarly, we have
Fact B: numk+1( y) > 0 is equivalent to numk( y) > denk( y).

Fact C is that numk( y) ≥ 0 is equivalent to

n − k
k

· n − k − 1
k + 1

· · · (n + 1)/2
(n − 1)/2

≥ yk−n/2−1/2 + yn/2−k+1/2.

To see this, note that numk( y) ≥ 0 is equivalent to Dk/k ≥ yk−n/2−1/2 + yn/2−k+1/2 and

Dk/k = (n − k)!
((n − 1)/2)!

(k − 1)!
((n − 1)/2)! = n − k

k
· n − k − 1

k + 1
· · · (n + 1)/2

(n − 1)/2
.

Similarly, we have Fact D: numk( y) > 0 is equivalent to

n − k
k

· n − k − 1
k + 1

· · · (n + 1)/2
(n − 1)/2

> yk−n/2−1/2 + yn/2−k+1/2.

Fact E is numk+1( y) ≥ 0 ⇒ numk( y) > 0 for k ∈ {0, . . . , (n − 3)/2}. If numk+1( y) ≥
0, from Fact C we have

n − k − 1
k + 1

· n − k − 2
k + 2

· · · (n + 1)/2
(n − 1)/2

> yn/2−k−1/2

since yk−n/2+1/2 > 0. Note that there are n/2 − k − 1/2 terms on the left-hand side of
this inequality which are all less than (n−k)/k. Hence [(n−k)/k]n/2−k−1/2 > yn/2−k−1/2

and thus we get the inequality (n − k)/k > y. Fact C gives us the inequality

n − k − 1
k + 1

· n − k − 2
k + 2

· · · (n + 1)/2
(n − 1)/2

≥ yk−n/2+1/2 + yn/2−k−1/2.

We multiply these inequalities together and get

n − k
k

· n − k − 1
k + 1

· n − k − 2
k + 2

· · · (n + 1)/2
(n − 1)/2

> yk−n/2+3/2 + yn/2−k+1/2.

But yk−n/2+3/2 > yk−n/2−1/2 since y > 1 and thus by Fact D we have numk( y) > 0.
Since q ∈ (1/2, 1), we have y = q/(1 − q) ∈ (1, ∞). Let y ∈ (1, ∞) and show that

there uniquely exists k ∈ {0, 1, . . . , (n − 3)/2} such that zk( y) ∈ (0, 1].
Note that num0( y) = D0 > 0. Since num(n−1)/2(1) = D(n−1)/2 − (n−1) = (n+1)/2−

(n − 1) = (3 − n)/2 ≤ 0 and num(n−1)/2( y) is strictly decreasing for y > 1, we know
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num(n−1)/2( y) < 0. Hence there exists k ∈ {0, . . . , (n − 3)/2} such that numk( y) > 0
and numk+1( y) ≤ 0. Note that this k is unique: say numk( y) > 0, numk+1( y) ≤ 0,
numk′ ( y) > 0 and numk′+1( y) ≤ 0 for k < k′. Then we have numk+1( y) ≤ 0 and
numk′ ( y) > 0, which contradicts Fact E.

Show zk( y) ∈ (0, 1]. Since numk+1( y) ≤ 0, we know numk( y) ≤ denk( y) by Fact A.
Since numk( y) > 0, we know zk( y) = numk( y)/denk( y) ∈ (0, 1].

Show zj( y) /∈ (0, 1] or is undefined for j ∈ {0, . . . , (n − 3)/2}, j �= k. Since j �= k,
we have three possible cases: (i) numj( y) > 0 and numj+1( y) > 0, (ii) numj( y) ≤ 0 and
numj+1( y) ≤ 0, and (iii) numj( y) ≤ 0 and numj+1( y) > 0. By Fact E, (iii) cannot happen.
Also by Fact E, if numj+1( y) = 0, then numj( y) ≤ 0 is impossible and hence case (ii)
reduces to numj( y) ≤ 0 and numj+1( y) < 0. In case (i), we have numj( y) > denj( y) by
Fact B; since numj( y) > 0, if denj( y) > 0, then zj( y) > 1, if denj( y) < 0, then zj( y) < 0,
and if denj( y) = 0, then zj( y) is undefined. In case (ii), we have numj( y) < denj( y)
by Fact A; since numj( y) ≤ 0, if denj( y) > 0, then zj( y) ≤ 0, if denj( y) < 0, then
zj( y) > 1, and if denj( y) = 0, then zj( y) is undefined.

To show that k is nonincreasing in q, it suffices to show that k is nonincreasing in y,
since y = q/(1 − q). Let y < y′. Remember that k is chosen so that numk( y) > 0 and
numk+1( y) ≤ 0. Choose k′ so that numk′ ( y′) > 0 and numk′+1( y′) ≤ 0. We show k ≥ k′
by contradiction. Say that k < k′. Since numk′ ( y′) > 0 and k + 1 ≤ k′, by Fact E we
have numk+1( y′) > 0. Hence by Fact D we have

n − k − 1
k + 1

· · · (n + 1)/2
(n − 1)/2

> ( y′)k−n/2−1/2 + ( y′)n/2−k+1/2.

But numk+1( y) ≤ 0, and hence by Fact D we have

n − k − 1
k + 1

· · · (n + 1)/2
(n − 1)/2

≤ yk−n/2−1/2 + yn/2−k+1/2.

Thus we have ( y′)k−n/2−1/2 + ( y′)n/2−k+1/2 < yk−n/2−1/2 + yn/2−k+1/2, which contra-
dicts y < y′ since y, y′ > 1.

Since numk( y) > 0, by the reasoning in the proof of Fact E, we have (n − k)/k > y
and thus k < n/( y + 1) = (1 − q)n since y = q/(1 − q). To show k/n → ρ as n → ∞,
note that as n grows large, k is given by numk( y) = 0, which is (k − 1)!(n − k)! = (((n −
1)/2)!)2yn/2−k+1/2 as n grows large. Using Stirling’s approximation log m! ≈ m log m−m,
we have

(k − 1) log (k − 1) + (n − k) log (n − k)

= (n − 1) log ((n − 1)/2) + (n/2 − k + 1/2) log y.

If we let k = ρn, we get

(ρn − 1) log (ρn − 1) + (1 − ρ)n log ((1 − ρ)n)

= (n − 1) log ((n − 1)/2) + (n/2 − ρn + 1/2) log y.
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As n grows large, we have ρn log (ρn) + (1 − ρ)n log ((1 − ρ)n) = n log (n/2)+
n(1/2 − ρ) log y, and thus ρ log (ρn)+(1−ρ) log ((1−ρ)n) = log (n/2)+(1/2−ρ) log y.
We simplify to get ρ log ρ + (1 − ρ) log (1 − ρ) + log 2 = (1/2 − ρ) log y.

To show that this equation determines ρ uniquely, write it as h(ρ) = − log 2, where
h(x) = x log x + (1 − x) log (1 − x) − (1/2 − x) log y is defined on (0, 1). We can calculate
∂2h/∂x2 = 1/x + 1/(1 − x) > 0 for x ∈ (0, 1) and hence h is strictly convex. Thus
h(x) = − log 2 for at most two values of x. Since h(1/2) = − log 2, one of those values
is x = 1/2. Since k/n → ρ, and k/n < 1 − q < 1/2, we know that ρ �= 1/2 and
is thus defined uniquely. It is easy to show that ∂h/∂x = 0 at x = 1 − q, and hence
if we have two solutions of h(x) = − log 2, then one must be less than 1 − q and one
must be greater than 1 − q. Since the solution x = 1/2 is greater than 1 − q, we
have ρ < 1 − q. �
Proposition 3 Say that there exist i, j ∈ N such that φi(b) > q and φj(a) > q. Then
fSP is the anonymous incentive compatible procedure which uniquely maximizes EU0, where
φ0(a) = φ0(b) = 1/2.
Proof: First we need three facts. Fact 1. If y > 1 and x > 0, then y2x − xyx log
y − 1 > 0. Since this holds with equality when x = 0, it suffices to show that
(d/dx)( y2x − xyx log y − 1) = yx(2yx log y − log y − x( log y)2) > 0, or in other words
2yx log y − log y − x( log y)2 > 0. This is true when x = 0; since (d/dx)(2yx log y −
log y − x( log y)2) = ( log y)2(2yx − 1) > 0, we are done.

Fact 2. If y > 1, then

θ( j) = yn−j − yj

(n − j)( yj + yn−1−j) − j( yj−1 + yn−j)

is positive and strictly increasing for j ∈ [0, n/2). Note that θ(0) = ( yn − 1)/(n(1 +
yn+1)) > 0 since y > 1. It suffices to show that ∂θ( j)/∂j > 0 for j ∈ [0, n/2). We
can write

θ( j) = yn − y2j

(n − j)( y2j + yn−1) − j( y2j−1 + yn)
.

After some computation, we find

∂θ( j)
∂j

= (1 + y)y4j−1( y2n−4j − (2n − 4j)yn−2j − 1)
((n − j)( y2j + yn−1) − j( y2j−1 + yn))2 ,

which has the same sign as y2n−4j − (2n − 4j)yn−2j − 1. This is positive by Fact 1 (let
x = n − 2j > 0).

Fact 3. If s( j) > 0 and r( j)/s( j) strictly increases in j, and
∑m

j=0 s( j) > s > 0, then
the constrained maximization problem

Maximize
x(0), . . . , x(m) ∈ [0, 1]

m∑
j=0

−r( j)x( j) such that
m∑

j=0

s( j)x( j) = s
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has a unique maximum in which x( j) = 1 for j < l, x(l) ∈ (0, 1], and x( j) = 0 for j > l,
where 0 ≤ l ≤ m.

To prove this, we write the Lagrangian

L =
m∑

j=0

−r( j)x( j) + λs( j)x( j) + (µ( j) − ν( j))x( j).

Since we are maximizing a continuous function over a nonempty compact set, an opti-
mum x exists. By the Kuhn–Tucker theorem, there exists λ ∈ � and µ( j), ν( j) ≥ 0
such that ∂L/∂x( j) = 0, where µ( j) = 0 if x( j) > 0 and ν( j) = 0 if x( j) < 1. In other
words, if we let

M =
m∑

j=0

−r( j)x( j) + λs( j)x( j)

there exists λ ∈ � such that ∂M/∂x( j) ≥ 0 if x( j) > 0, ∂M/∂x( j) ≤ 0 if x( j) < 1, and
∂M/∂x( j) = 0 if x( j) ∈ (0, 1). But ∂M/∂x( j) = −r( j) + λs( j) = s( j)( − r( j)/s( j) + λ),
and since s( j) > 0, the sign of ∂M/∂x( j) is the sign of −r( j)/s( j) + λ. Since −r( j)/s( j)
strictly decreases in j, either (i) ∂M/∂x( j) > 0 for all j, (ii) ∂M/∂x( j) < 0 for all j, or
(iii) there exists l, where 0 ≤ l ≤ m, such that ∂M/∂x( j) > 0 for j < l, ∂M/∂x(l) ≥ 0,
and ∂M/∂x( j) < 0 for j > l. If we have (i), then x( j) = 1 for all j, but this is not feasible
since

∑m
j=0 s( j) > s. If we have (ii), then x( j) = 0 for all j, but this is not feasible since

s > 0. Hence we have (iii), and there exists l, where 0 ≤ l ≤ m, such that x( j) = 1 for
j < l, x(l) ∈ (0, 1], and x( j) = 0 for j > l. This maximum is unique because given
that x( j) = 1 for j < l and x( j) = 0 for j > l, a unique x(l) satisfies the constraint∑m

j=0 s( j)x( j) = s.

Now we start the main proof. Show that fSP is incentive compatible. Since fSP is
symmetric, by Lemma 1, it suffices to show that W (q, γSP) = 0, where γSP(α(r)) =
fSP(r). It is easy to show this given the definition of z and k in Lemma 2.

Let F be the set of anonymous incentive compatible procedures. Let F ′ ⊂ F be
the set of symmetric anonymous incentive compatible procedures. First show that
fSP uniquely maximizes EU0 over F ′. By Lemma 1, since φi(b) > q, we know
f ∈ F ′ is incentive compatible if and only if W (q, γ) = 0. Hence we have the
single constraint W (q, γ) = 0, along with the constraints γ( j) ∈ [0, 1]. Since f is
symmetric, our choice variables are γ(0), γ(1), . . . , γ((n − 1)/2) (we have γ((n + 1)/2) =
1−γ((n−1)/2), . . . , γ(n−1) = 1−γ(1), γ(n) = 1−γ(0)). We can write the constraint
W (q, γ) = 0 in terms of these variables: Cn−1

(n−1)/2q(n−1)/2(1−q)(n−1)/2(2γ((n−1)/2)−1)+∑(n−3)/2
j=0 Cn−1

j (qj(1 − q)n−1−j + qn−j−1(1 − q)j)(γ( j) − γ( j + 1)) = 0. If we let
y = q/(1−q) and multiply both sides by (1−q)−n+1, we can write this constraint as simply
Cn−1

(n−1)/2y(n−1)/2(2γ((n−1)/2)−1)+∑(n−3)/2
j=0 Cn−1

j ( yj +yn−1−j)(γ( j)−γ( j +1)) = 0,

or in other words 2Cn−1
(n−1)/2y(n−1)/2γ((n − 1)/2) +∑(n−3)/2

j=0 Cn−1
j ( yj + yn−1−j)(γ( j) −

γ( j + 1)) = Cn−1
(n−1)/2y(n−1)/2.
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Our objective function, the expected utility of a person with φ0(a) = φ0(b) = 1/2, is

EU0 = φ0(a)paa( f , id, . . . , id) + φ0(b)pbb( f , id, . . . , id)

= φ0(a)
n∑

j=0

Cn
j qj(1 − q)n−jγ( j) + φ0(b)

n∑
j=0

Cn
j (1 − q)jqn−j(1 − γ( j))

= 1
2

n∑
j=0

Cn
j (1 − q)jqn−j + 1

2

n∑
j=0

Cn
j [qj(1 − q)n−j − (1 − q)jqn−j]γ( j).

Since this first term is constant in γ( j), maximizing EU0 is equivalent to maximizing
the second term. We can multiply the second term by the positive constant 2(1 − q)−n

and thus we can write the objective as
∑n

j=0 Cn
j ( yj − yn−j)γ( j), where y = q/(1 − q).

But

n∑
j=0

Cn
j ( yj − yn−j)γ( j) =

(n−1)/2∑
j=0

Cn
j ( yj − yn−j)γ( j) + Cn

n−j( yn−j − yj)γ(n − j)

=
(n−1)/2∑

j=0

Cn
j ( yj − yn−j)γ( j) + Cn

n−j( yn−j − yj)(1 − γ( j))

=
(n−1)/2∑

j=0

Cn
n−j( yn−j − yj) + 2

(n−1)/2∑
j=0

Cn
j ( yj − yn−j)γ( j)

because Cn
n−j = Cn

j and γ(n − j) = 1 − γ( j) because f is symmetric.
So our maximization problem is to choose γ(0), γ(1), . . . , γ((n − 1)/2) ∈ [0, 1]

to maximize
∑(n−1)/2

j=0 Cn
j ( yj − yn−j)γ( j) such that 2Cn−1

(n−1)/2y(n−1)/2γ((n − 1)/2) +∑(n−3)/2
j=0 Cn−1

j ( yj +yn−1−j)(γ( j)−γ( j +1)) = Cn−1
(n−1)/2y(n−1)/2. Let r( j) = Cn

j ( yn−j −
yj) be the coefficient on γ( j) in the objective and let s( j) = Cn−1

j ( yj + yn−1−j) −
Cn−1

j−1 ( yj−1 + yn−j) be the coefficient on γ( j) in the constraint. Let s = Cn−1
(n−1)/2y(n−1)/2.

Then r( j)/s( j) = nθ( j), where θ( j) is defined in Fact 2 above. Fact 2 says that θ( j) is
positive and strictly increasing. Since θ( j) is positive and r( j) is positive, we know s( j) is
positive. Since we know that γSP satisfies the constraint, we have

∑(n−1)/2
j=0 s( j) > s > 0.

Thus we can use Fact 3 to conclude that there is a unique maximum γ , where γ( j) = 1
for j < l, γ(l) ∈ (0, 1], and γ( j) = 0 for j > l. By definition, also γSP( j) = 1 for j < k,
γSP(k) ∈ (0, 1], and γSP( j) = 0 for j > k. Since both γ and γSP satisfy the constraint, it
is easy to show that k = l and hence γ = γSP . Thus fSP uniquely maximizes EU0 over F ′.

Now show that fSP uniquely maximizes EU0 over F. Say that γ maximizes EU0
over F. Given φ, it suffices to show that A(φ, γ ′′) = 0 and B(φ, γ ′′) = 0. Define γ ′′ as
γ ′′( j) = 1−γ(n− j) and show γ ′′ is incentive compatible. Define φ′′ as φ′′(a) = φ(b) and
φ′′(b) = φ(a). Since γ is incentive compatible, by Lemma 1 we have A(φ′′, γ) = 0 and
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B(φ′′, γ) = 0. But it is easy to show that A(φ, γ ′′) = B(φ′′, γ) and B(φ, γ ′′) = A(φ′′, γ),
and hence A(φ, γ ′′) = 0 and B(φ, γ ′′) = 0.

Define γ ′ as γ ′( j) = (γ( j) + γ ′′( j))/2. Since γ and γ ′′ are incentive compatible,
by convexity, γ ′ is incentive compatible. It is easy to see that EU0 given γ is equal
to EU0 given γ ′′, and thus by convexity, EU0 given γ ′ is equal to EU0 given γ .
Since γ ′ is symmetric and γ maximizes EU0 over F, γ ′ maximizes EU0 over F ′.
Since γSP uniquely maximizes EU0 over F ′, we have γ ′ = γSP , in other words
(γ( j) + 1 − γ(n − j))/2 = γSP( j). Show that γ = γSP . Note that for j such that
γSP( j) = 0, we must have γ( j) = 0 and γ(n − j) = 1, and hence γSP( j) = γ( j). For j
such that γSP( j) = 1, we must have γ( j) = 1 and γ(n−j) = 0, and hence γSP( j) = γ( j).

So the optimal γ is uniquely determined except for γ(k) and γ(n − k). We show that
γ(k) and γ(n − k) are uniquely determined. By Proposition 1, γ satisfies the incentive
compatibility constraints with equality for all φ. Hence A(φ, γ) = 0, or in other words
(as shown in the proof of Lemma 1), φ(a)(1 − q)

∑n−1
j=0 Cn−1

j qj(1 − q)n−1−j(γ( j) −γ( j +
1)) +φ(b)q

∑n−1
j=0 Cn−1

j (1 − q)jqn−1−j(γ( j + 1) −γ( j)) = 0. Since this is true for φ(a) =
1,φ(b) = 0 as well as for φ(a) = 0,φ(b) = 1, we have

∑n−1
j=0 Cn−1

j qj(1 − q)n−1−j(γ( j) −
γ( j +1)) = 0 and

∑n−1
j=0 Cn−1

j (1−q)jqn−1−j(γ( j +1)−γ( j)) = 0. Since γ( j) is uniquely
determined except for γ(k) and γ(n−k), we have ((n−k)yk −kyk−1)γ(k)+(kyn−k −(n−
k)yn−k−1)γ(n−k) = v1 and (kyn−k −(n−k)yn−k−1)γ(k)+((n−k)yk −kyk−1)γ(n−k) =
v2, where v1, v2 are constants in γ(k), γ(n−k) and y = q/(1−q). We have two linear equa-
tions in two unknowns, and thus to show that γ(k), γ(n − k) are uniquely determined, it
is sufficient to show that the determinant ((n−k)yk −kyk−1)2 −(kyn−k −(n−k)yn−k−1)2

is nonzero, or in other words ((n − k)yk − kyk−1)2 �= (kyn−k − (n − k)yn−k−1)2. Since
n − k > k and y > 1, we have (n − k)y > k and thus (n − k)yk − kyk−1 > 0. Since
from Lemma 2 we have ky < n − k, we have kyn−k − (n − k)yn−k−1 < 0. Thus the only
way the determinant can be zero is if (n − k)yk − kyk−1 = −(kyn−k − (n − k)yn−k−1).
If this is true, then (n − k)( yk − yn−k−1) = k( yk−1 − yn−k), which is impossible since
n−k > k and yk −yn−k−1 > yk−1 −yn−k. Since γ(k), γ(n−k) are uniquely determined
by the incentive compatibility constraints and γSP(k), γSP(n − k) satisfy the incentive
compatibility constraints, we have γ(k) = γSP(k) and γ(n − k) = γSP(n − k). �
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